Claim Missing Document
Check
Articles

Found 14 Documents
Search

Biomass-Based Supercapacitors Electrodes for Electrical Energy Storage Systems Activated Using Chemical Activation Method: A Literature Review and Bibliometric Analysis Ida Hamidah; Ramdhani Ramdhani; Apri Wiyono; Budi Mulyanti; Roer Eka Pawinanto; Lilik Hasanah; Markus Diantoro; Brian Yuliarto; Jumril Yunas; Andrivo Rusydi
Indonesian Journal of Science and Technology Vol 8, No 3 (2023): (ONLINE FIRST) IJOST: December 2023
Publisher : Universitas Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17509/ijost.v8i3.60688

Abstract

Currently, carbon derived from biomass waste or residues is being intensively utilized as electrodes due to its excellent electrical properties, including high conductivity, appropriate porosity, and a specific surface area suitable for supercapacitor applications. Despite its advantages, the performance of supercapacitors made from biomass-derived carbon is insufficient for engineering applications because of the challenges in obtaining the mesoporous structure of activated carbon (AC). Therefore, this study highlights the potential of biomass-based carbon as the electrodes of a highly efficient supercapacitor, which can facilitate highly efficient current transport in energy storage systems. It comprehensively discusses various biomass material sources and activation methods to produce carbon, with a focus on the physical and electrical properties. Initially, the study discusses carbon activation methods and mechanisms to understand why activating agents and electrolyte solutions have a high specific surface area and specific capacitance. It then concentrates on the chemical activation method and its importance in making AC useful as an efficient electrode. Finally, in this study, various biomass sources were discussed to highlight the performance of supercapacitors electrodes originating from agricultural and wood residues relating to the specific capacitance and capacitance retention. Based on the obtained results, it is concluded that biomass-based carbon materials could be the most advantageous platform material for energy conversion and storage.
2-Dimensional Materials for Performance Enhancement of Surface Plasmon Resonance Biosensor: Review Paper Chandra Wulandari; Ni Luh Wulan Septiani; Nugraha Nugraha; Ahmad Nuruddin; Brian Yuliarto
Journal of Engineering and Technological Sciences Vol. 55 No. 4 (2023)
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2023.55.4.10

Abstract

Surface plasmon resonance (SPR)--based biosensors compete and excel among optical biosensors because of exceptional features such as high sensitivity, label-free, and real-time measurement, allowing the observation of molecular binding kinetics. In SPR biosensors and other biosensor techniques, surface functionalization and bioreceptor attachment are effective strategies to improve sensor performance. The application of an appropriate immobilization matrix for the bioreceptor is an essential step in maximizing the absorption of the bioreceptor on the sensor surface, thereby improving a specific target-sensor interaction. Furthermore, the materials should provide excellent optical properties to enhance the response signal. The high surface-to-volume ratio and high optical absorption of 2D materials qualify these requirements, thus promising advancements for SPR biosensors. This article reviews the recent SPR biosensor study with the use of the 2D materials family to improve the sensor performance, including graphene, transition metal dichalcogenides (TMDCs), MXene, black phosphorus (BP), perovskite, and boron nitride (BN). The materials properties and enhancement mechanisms of different 2D materials are discussed comprehensively. This review was expected to provide a future perspective and design approach for 2D materials-based SPR biosensors.
Study of the Structure and Electronic Properties of the ZnO Monolayer: Density Functional Theory Raihan, Muhammad Fadlan; Wungu, Triati Dewi Kencana; Yuliarto, Brian
Computational And Experimental Research In Materials And Renewable Energy Vol 4 No 1 (2021): May
Publisher : Physics Department, Faculty of Mathematics and Natural Sciences, University of Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/cerimre.v4i1.24961

Abstract

ZnO has received considerable attention since it has promising applications in electronic devices. Although many studies have explored the potential of ZnO as a promising material, the precise role of geometric in ZnO remains unclear. This study deals with the electronic structure of the ZnO monolayer using density functional theory (DFT). The DFT was used to investigate the band structure and density of states of the ZnO monolayer. It is observed that the structural change of ZnO from bulk to monolayer increases the bandgap by 1.84 eV without changes its natural characteristic. Moreover, This study provides information about the properties of the ZnO monolayer and its potential in electronic and magnetic devices application.
Cost-Effective Manufacturing of Microfluidics Through the Utilization of Direct Ink Writing Prajitna, Stefanus H.; Harito, Christian; Yuliarto, Brian
Emerging Science Journal Vol 9, No 1 (2025): February
Publisher : Ital Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/ESJ-2025-09-01-01

Abstract

Microfluidics is essential for precise manipulation of fluids in small channels. However, conventional manufacturing processes for microfluidic devices are expensive, time-consuming, and require specialized equipment in a clean room. While recent studies have improved the cost-effectiveness of this device, there is still a need for further advancement in cost efficiency. Therefore, this study aimed to develop a custom-built direct-ink writing (DIW) printer for manufacturing microfluidic devices that is more affordable. Custom-built DIW directly printed microfluidic channels onto microscope slide glass using RTV (Room Temperature Vulcanizing) silicone sealant. To finish the microfluidics manufacturing, the printed channel will be assembled by placing the same glass on top of the printed layer. This method eliminated the need for polydimethylsiloxane (PDMS) molds and casting processes that were still found in recent studies. This innovative $250 (USD) custom-built DIW method takes 15 seconds to print microfluidics channels and showed a significant cost reduction, with each microfluidics device costing only $0.071 (USD) compared to $0.90 (USD) in previous studies. This study makes microfluidics more affordable and accessible for biomedical use. Doi: 10.28991/ESJ-2025-09-01-01 Full Text: PDF