Claim Missing Document
Check
Articles

Found 25 Documents
Search

PARAMETER SIGMOID TRANSFORM CONTRAST ENHANCEMENT FOR DENTAL RADIOGRAPH CLASSIFICATION AND NUMBERING SYSTEM Andi Baso Kaswar; Saprina Mamase; Saiful Bahri Musa; Ahmad Mustofa Hadi; Anny Yuniarti; Agus Zainal Arifin
Jurnal Ilmu Komputer dan Informasi Vol 8, No 2 (2015): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (609.272 KB) | DOI: 10.21609/jiki.v8i2.303

Abstract

Dental record is a method that is used to identify a person. The identification process needs a system that could recognize each individual tooth automatically. The similar intensity level between the teeth and the gums is one of the main problem in tooth identification in a dental radiograph. The intensity problem could influence the segmentation process of the system. In this paper, we proposed a new contrast enhancement by using parameter sigmoid transform to increase the segmentation accuracy. There are five main steps in this method. The first step is to fix the contrast of the image with the proposed method. The next steps are to segment the teeth using horizontal and vertical integral projection, feature extraction, and classification using Support Vector Machine (SVM). The last step is teeth numbering. The experiment result using the proposed method have an accuracy rate of 88% for classification and 73% for teeth numbering.
SIMILARITY BASED ENTROPY ON FEATURE SELECTION FOR HIGH DIMENSIONAL DATA CLASSIFICATION Jayanti Yusmah Sari; Mutmainnah Muchtar; Mohammad Zarkasi; Agus Zainal Arifin
Jurnal Ilmu Komputer dan Informasi Vol 7, No 2 (2014): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (255.891 KB) | DOI: 10.21609/jiki.v7i2.263

Abstract

Abstract Curse of dimensionality is a major problem in most classification tasks. Feature transformation and feature selection as a feature reduction method can be applied to overcome this problem. Despite of its good performance, feature transformation is not easily interpretable because the physical meaning of the original features cannot be retrieved. On the other side, feature selection with its simple computational process is able to reduce unwanted features and visualize the data to facilitate data understanding. We propose a new feature selection method using similarity based entropy to overcome the high dimensional data problem. Using 6 datasets with high dimensional feature, we have computed the similarity between feature vector and class vector. Then we find the maximum similarity that can be used for calculating the entropy values of each feature. The selected features are features that having higher entropy than mean entropy of overall features. The fuzzy k-NN classifier was implemented to evaluate the selected features. The experiment result shows that proposed method is able to deal with high dimensional data problem with average accuracy of 80.5%.
LOCAL BINARIZATION FOR DOCUMENT IMAGES CAPTURED BY CAMERAS WITH DECISION TREE Naser Jawas; Randy Cahya Wihandika; Agus Zainal Arifin
Jurnal Ilmu Komputer dan Informasi Vol 5, No 1 (2012): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1763.518 KB) | DOI: 10.21609/jiki.v5i1.183

Abstract

Character recognition in a document image captured by a digital camera requires a good binary image as the input for the separation the text from the background. Global binarization method does not provide such good separation because of the problem of uneven levels of lighting in images captured by cameras. Local binarization method overcomes the problem but requires a method to partition the large image into local windows properly. In this paper, we propose a local binariation method with dynamic image partitioning using integral image and decision tree for the binarization decision. The integral image is used to estimate the number of line in the document image. The number of line in the document image is used to devide the document into local windows. The decision tree makes a decision for threshold in every local window. The result shows that the proposed method can separate the text from the background better than using global thresholding with the best OCR result of the binarized image is 99.4%. Pengenalan karakter pada sebuah dokumen citra yang diambil menggunakan kamera digital membutuhkan citra yang terbinerisasi dengan baik untuk memisahkan antara teks dengan background. Metode binarisasi global tidak memberikan hasil pemisahan yang bagus karena permasalahan tingkat pencahayaan yang tidak seimbang pada citra hasil kamera digital. Metode binarisasi lokal dapat mengatasi permasalahan tersebut namun metode tersebut membutuhkan metode untuk membagi citra ke dalam bagian-bagian window lokal. Pada paper ini diusulkan sebuah metode binarisasi lokal dengan pembagian citra secara dinamis menggunakan integral image dan decision tree untuk keputusan binarisasi lokalnya. Integral image digunakan untuk mengestimasi jumlah baris teks dalam dokumen citra. Jumlah baris tersebut kemudian digunakan untuk membagi citra dokumen ke dalam window lokal. Keputusan nilai threshold untuk setiap window lokal ditentukan dengan decisiontree. Hasilnya menunjukkan metode yang diusulkan dapat memisahkan teks dari dokumen citra lebih baik dari binarisasi global dengan tingkat pengenalan OCR hingga 99.4%.
Perangkingan Dokumen Berbahasa Arab Menggunakan Latent Semantic Indexing Aminul Wahib; Pasnur Pasnur; Putu Praba Santika; Agus Zainal Arifin
Jurnal Buana Informatika Vol. 6 No. 2 (2015): Jurnal Buana Informatika Volume 6 Nomor 2 April 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i2.411

Abstract

Berbagai metode perangkingan dokumen dalam aplikasi InformationRetrieval telah dikembangkan dan diimplementasikan. Salah satu metode yangsangat populer adalah perangkingan dokumen menggunakan vector space modelberbasis pada nilai term weighting TF.IDF. Metode tersebut hanya melakukanpembobotan term berdasarkan frekuensi kemunculannya pada dokumen tanpamemperhatikan hubungan semantik antar term. Dalam kenyataannya hubungansemantik antar term memiliki peranan penting untuk meningkatkan relevansi hasilpencarian dokumen. Penelitian ini mengembangkan metode TF.IDF.ICF.IBFdengan menambahkan Latent Semantic Indexing untuk menemukan hubungansemantik antar term pada kasus perangkingan dokumen berbahasa Arab. Datasetyang digunakan diambil dari kumpulan dokumen pada perangkat lunak MaktabahSyamilah. Hasil pengujian menunjukkan bahwa metode yang diusulkanmemberikan nilai evaluasi yang lebih baik dibandingkan dengan metodeTF.IDF.ICF.IBF. Secara berurut nilai f-measure metode TF.IDF.ICF.IBF.LSIpada ambang cosine similarity 0,3, 0,4, dan 0,5 adalah 45%, 51%, dan 60%. Namun metode yang disulkan memiliki waktu komputasi rata-rata lebih tinggidibandingkan dengan metode TF.IDF.ICF.IBF sebesar 2 menit 8 detik.
Klasterisasi Jenis Musik Menggunakan Kombinasi Algoritma Neural Network, K-Means dan Particle Swarm Optimization Alhaji Sheku Sankoh; Ahmad Reza Musthafa; Muhammad Imron Rosadi; Agus Zainal Arifin
Jurnal Buana Informatika Vol. 6 No. 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i3.431

Abstract

Abstract. Having a number of audio files in a directory could result to unstructured arrangement of files. This will cause some difficulties for users in sorting a collection of audio files based on a particular category of music. In some previous studies, researchers used a method conducting to group documents on a web page. However, those studies were not carried out on file containing documents such as audio files; relatively they were conducted on files that contain text documents. In this study, we develop a method of grouping files using a combination of pre-processing approach, neural networks, k-means, and particle swarm optimization to obtain a form of audio file collections that are group based on the types of music. The result of this study is a system with improved method of grouping audio files based on the type of music. The pre-processing stage has therefore produced the best results on this approach based on spectrum analysis melody and bass guitar, which offers a value precision 95%, 100% recall and an F-Measure 97.44%.Keywords: Cluster, Music, NN, K-Means, PSO Abstrak. Banyaknya file audio pada suatu direktori membuat sususan file tidak terstruktur. Hal ini akan menyulitkan pengguna untuk mengurutkan bahkan memilah kumpulan file audio berdasarkan kategori tertentu, khususnya kategori berdasarkan jenis musik. Pada penelitian sebelumnya, dilakukan pengelompokan dokumen pada suatu halaman website. Namun hal tersebut tidak dilakukan pada file selain dokumen, seperti file audio. Penelitian ini bertujuan untuk mengembangkan metode pengelompokan file berupa kombinasi pendekatan pre-processing, neural network, k-means, dan particle swarm optimization dengan masukan berupa file audio sehingga diperoleh keluaran berupa kumpulan file audio yang telah terkelompok berdasarkan jenis musik. Hasil dari penelitian ini yaitu berupa suatu sistem dengan pengembangan metode dalam pengelompokan file audio berdasarkan jenis musik. Metode pada tahap pre-processing memiliki hasil terbaik pada pendekatan berdasarkan analisa spectrum melodi gitar dan bass, di mana memiliki nilai precission 95%, recall 100% dan F-Measure 97,44%. Kata kunci: Klaster, Musik, NN, K-Means, PSO
Optimasi Pembobotan pada Query Expansion dengan Term Relatedness to Query-Entropy based (TRQE) Resti Ludviani; Khadijah F. Hayati; Agus Zainal Arifin; Diana Purwitasari
Jurnal Buana Informatika Vol. 6 No. 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i3.433

Abstract

Abstract. An appropriate selection term for expanding a query is very important in query expansion. Therefore, term selection optimization is added to improve query expansion performance on document retrieval system. This study proposes a new approach named Term Relatedness to Query-Entropy based (TRQE) to optimize weight in query expansion by considering semantic and statistic aspects from relevance evaluation of pseudo feedback to improve document retrieval performance. The proposed method has 3 main modules, they are relevace feedback, pseudo feedback, and document retrieval. TRQE is implemented in pseudo feedback module to optimize weighting term in query expansion. The evaluation result shows that TRQE can retrieve document with the highest result at precission of 100% and recall of 22,22%. TRQE for weighting optimization of query expansion is proven to improve retrieval document.     Keywords: TRQE, query expansion, term weighting, term relatedness to query, relevance feedback Abstrak..Pemilihan term yang tepat untuk memperluas queri merupakan hal yang penting pada query expansion. Oleh karena itu, perlu dilakukan optimasi penentuan term yang sesuai sehingga mampu meningkatkan performa query expansion pada system temu kembali dokumen. Penelitian ini mengajukan metode Term Relatedness to Query-Entropy based (TRQE), sebuah metode untuk mengoptimasi pembobotan pada query expansion dengan memperhatikan aspek semantic dan statistic dari penilaian relevansi suatu pseudo feedback sehingga mampu meningkatkan performa temukembali dokumen. Metode yang diusulkan memiliki 3 modul utama yaitu relevan feedback, pseudo feedback, dan document retrieval. TRQE diimplementasikan pada modul pseudo feedback untuk optimasi pembobotan term pada ekspansi query. Evaluasi hasil uji coba menunjukkan bahwa metode TRQE dapat melakukan temukembali dokumen dengan hasil terbaik pada precision  100% dan recall sebesar 22,22%.Metode TRQE untuk optimasi pembobotan pada query expansion terbukti memberikan pengaruh untuk meningkatkan relevansi pencarian dokumen.Kata Kunci: TRQE, ekspansi query, pembobotan term, term relatedness to query, relevance feedback
Deteksi Bot Spammer pada Twitter Berbasis Sentiment Analysis dan Time Interval Entropy Christian Sri Kusuma Aditya; Mamluatul Hani’ah; Alif Akbar Fitrawan; Agus Zainal Arifin; Diana Purwitasari
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.656

Abstract

Abstract. Spam is an abuse of messaging undesired by recipients. Those who send spam are called spammers.  Popularity of Twitter has attracted spammers to use it as a means to disseminate spam messages. The spams are characterized by a neutral emotional sentiment or no particular users’ preference perspective. In addition, the regularity of tweeting behavior periodically shows automation performed by bot. This study proposes a new method to differentiate between bot spammer and legitimate user accounts by integrating the sentiment analysis (SA) based on emotions and time interval entropy (TIE). The combination of knowledge-based and machine learning-based were used to classify tweets with positive, negative and neutral sentiments. Furthermore, the collection of timestamp is used to calculate the time interval entropy of each account. The results show that the precision and recall of the proposed method reach up to 83% and 91%. This proves that the merging SA and TIE can optimize overall system performance in detecting Bot Spammer.Keywords: bot spammer, twitter, sentiment analysis, polarity, entropy Abstrak. Spam merupakan penyalahgunaan pengiriman pesan tanpa dikehendaki oleh penerimanya, orang yang mengirimkan spam disebut spammer. Ketenaran Twitter mengundang spammer untuk menggunakannya sebagai sarana menyebarluaskan pesan spam. Karakteristik dari tweet yang dikategorikan spam memiliki sentimen emosi netral atau tidak ada preferensi tertentu terhadap suatu perspektif dari user yang memposting tweet. Selain itu keteraturan waktu perilaku saat memposting tweet secara periodik menunjukkan otomatisasi yang dilakukan bot. Pada penelitian ini diusulkan metode baru untuk mendeteksi antara bot spammer dan legitimate user dengan mengintegrasikan sentimen analysis berdasarkan emosi dan time interval entropy. Pendekatan gabungan knowledge-based dan machine learning-based digunakan untuk mengklasifikasi tweet yang memiliki sentimen positif, negatif dan tweet netral. Selanjutnya kumpulan timestamp digunakan untuk menghitung time interval entropy dari tiap akun. Hasil percobaan menunjukan bahwa precision dan recall dari metode yang diusulkan mencapai 83% dan 91%. Hal ini membuktikan penggabungan Sentiment Analysis (SA) dan Time Interval Entropy (TIE) dapat mengoptimalkan performa sistem secara keseluruhan dalam mendeteksi Bot Spammer.Kata Kunci:  bot spammer, twitter, sentiment analysis,  polarity, entropy
Segmentasi Citra Ikan Tuna dengan Mahalanobis Histogram Thresholding dan Mahalanobis Fuzzy C-Means Andi Baso Kaswar; Agus Zainal Arifin; Arya Yudhi Wijaya
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.658

Abstract

Abstract. Fuzzy C-Means segmentation algorithm based on Mahalanobis distance can be utilized to segment tuna fish image. However, initialization of pixels membership value and clusters centroid randomly cause the segmentation process become inefficient in terms of iteration and time of computation. This paper proposes a new method for tuna fish image segmentation by Mahalanobis Histogram Thresholding (M-HT) and Mahalanobis Fuzzy C-Means (MFCM). The proposed method consists of three main phases, namely: centroid initialization, pixel clustering and accuracy improvement. The experiment carried out obtained average of iteration amount is as many as 66 iteration with average of segmentation time as many as 162.03 second. While the average of Accuracy is 98.54%, average of Missclassification Error is 1.46%. The result shows that the proposed method can improve the efficiency of segmentation method in terms of number of iterations and time of segmentation. Besides that, the proposed method can give more accurate segmentation result compared with the conventional method.Keywords: Tuna Fish Image, Segmentation, Fuzzy Clustering, Histogram Thresholding, Mahalanobis Distance. Abstrak. Algoritma segmentasi Fuzzy C-Means berbasis jarak Mahalanobis dapat digunakan untuk mensegmentasi ikan tuna. Namun, inisialisasi derajat keanggotaan piksel dan centroid klaster secara random mengakibatkan proses segmentasi menjadi tidak efisien dalam hal iterasi dan waktu komputasi. Penelitian ini mengusulkan metode baru untuk segmentasi citra ikan tuna dengan Mahalanobis Histogram Thresholding (M-HT) dan Mahalanobis Fuzzy C-Means (MFCM). Metode ini terdiri atas tiga tahap utama, yaitu: inisialisasi centroid, pengklasteran piksel dan peningkatan akurasi. Berdasarkan hasil ekseprimen, diperoleh rata-rata jumlah iterasi sebanyak 66 iterasi dengan rata-rata waktu segmentasi 162,03 detik. Rata-rata Akurasi 98,54% dengan rata-rata tingkat Missclassification Error 1,46%. Hasil yang diperoleh menunjukkan bahwa metode yang diusulkan dapat meningkatkan efisiensi metode segmentasi dalam hal jumlah iterasi dan waktu segmentasi. Selain itu, metode yang diusulkan dapat memberikan hasil segmentasi yang lebih akurat dibandingkan dengan metode konvensional.Kata Kunci: Citra Ikan Tuna, Segmentasi, Fuzzy Clustering, Histogram Thresholding, Jarak Mahalanobis.
Ekstraksi Fitur Berdasarkan Deskriptor Bentuk dan Titik Salien Untuk Klasifikasi Citra Ikan Tuna Ratri Enggar Pawening; Agus Zainal Arifin; Anny Yuniarti
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.660

Abstract

Abstract. The manual classification of fish causes problems on accuracy and execution time. In the image of tuna, beside the shape feature, local features is also necessary to differentiate the types of fish especially which have a similar shape. The purpose of this study is to develop a new feature extraction system which integrates point of saline and the shape of descriptor to classify the image of tuna. The input image is then transformed into HSV format. Hue channel is selected for the segmentation process. Shape descriptors are extracted by using Fourier Descriptor (FD) and the saline points are extracted using Speeded Up Robust Features (SURF). The results of local features are performed by Bag of Feature (BOF). Feature integration combines shape descriptor and saline features with appropriate weight. Experimental results show that by integrating features, the classification problems of fish with similar shape can be resolved with an accuracy of classification acquired by 83.33%.Keywords: feature extraction, fourier descriptor, surf, classification, tuna fish imageAbstrak. Klasifikasi secara manual yang dilakukan berdasarkan bentuk, tekstur, dan bagian tubuh ikan dapat menimbulkan permasalahan pada akurasi dan waktu klasifikasi. Pada citra ikan tuna, selain diperlukan fitur bentuk juga diperlukan fitur lokal untuk membedakan jenis ikan terutama yang memiliki bentuk secara visual mirip. Tujuan penelitian ini adalah mengembangkan sistem ekstraksi fitur baru yang mengintegrasikan deskriptor bentuk dan titik salien untuk klasifikasi citra ikan tuna. Segmentasi diawali dengan mengambil kanal Hue pada citra HSV. Deskriptor bentuk diekstrak menggunakan Fourier Descriptor dan titik salien diekstrak menggunakan Speeded Up Robust Features. Untuk menyamakan dimensi dilakukan pemrosesan menggunakan Bag of Feature. Kedua jenis fitur yang sudah diperoleh dilakukan integrasi dengan mempertimbangkan bobot masing-masing fitur. Uji coba dilakukan pada dataset tiga jenis ikan tuna dengan 10-fold cross validation. Hasil uji coba menunjukkan dengan mengintegrasikan deskriptor bentuk dan titik salien permasalahan klasifikasi ikan tuna dengan bentuk yang mirip dapat diselesaikan dengan akurasi klasifikasi sebesar 83,33%.Kata Kunci: ekstraksi fitur, deskriptor fourier, surf, klasifikasi, citra ikan tuna
Segmentasi Citra Ikan Tuna Menggunakan Gradient-Barrier Watershed Berbasis Analisis Hierarki Klaster dan Regional Credibility Merging Arif Fadllullah; Agus Zainal Arifin; Dini Adni Navastara
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.661

Abstract

Abstract. The main issue of object identification in tuna image is the difficulty of extracting the entire contour of tuna physical features, because it is often influenced by uneven illumination and the ambiguity of object edges in tuna image. We propose a novel segmentation method to optimize the determination of tuna region using GBW-AHK and RCM. GBW-AHK is used to optimize the determination of adaptive threshold in order to reduce over-segmented watershed regions. Then, RCM merges the remaining regions based on two merging criteria, thus it produces two main areas of segmentation, the object extraction of tuna and the background. The experimental results on 25 tuna images demonstrate that the proposed method successfully produced an image segmentation with the average value of RAE by 4.77%, ME of 0.63%, MHD of 0.20, and the execution time was 11.61 seconds. Keywords: watershed, gradient-barrier, hierarchical cluster analysis, regional credibility merging, tuna segmentation Abstrak. Kendala utama identifikasi objek tuna pada citra ikan tuna adalah sulitnya mengekstraksi seluruh kontur tubuh ikan, karena seringkali dipengaruhi faktor iluminasi yang tidak merata dan ambiguitas tepi objek pada citra. Penelitian ini mengusulkan metode segmentasi baru yang mengoptimalkan penentuan region objek tuna menggunakan Gradient-Barrier Watershed berbasis Analisis Hierarki Klaster (GBW-AHK) dan Regional Credibility Merging (RCM). Metode GBW-AHK digunakan untuk mengoptimalkan penentuan adaptif threshold untuk mereduksi region watershed yang over-segmentasi. Kemudian RCM melakukan penggabungan region sisa hasil reduksi berdasarkan dua syarat penggabungan hingga dihasilkan dua wilayah utama segmentasi, yakni ekstraksi objek ikan tuna dan background. Hasil eksperimen pada 25 citra ikan tuna membuktikan bahwa metode usulan berhasil melakukan segmentasi dengan nilai rata-rata relative foreground area error (RAE) 4,77%, misclassification error (ME) 0,63%, modified Hausdorff distance (MHD) 0,20, dan waktu eksekusi 11,61 detik. Kata Kunci: watershed, gradient-barrier, analisis hierarki klaster, regional credibility merging, segmentasi tuna