Articles
Evaluasi Mutasai Jabatan Anggota Kepolisian Menggunakan Metode Profile Matching dan Multi Attribute Utility Theory
Chairun Nas;
Sarjon Defit;
Julius Santony
SITEKIN: Jurnal Sains, Teknologi dan Industri Vol 16, No 1 (2018): DESEMBER 2018
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24014/sitekin.v16i1.6734
Mutasi jabatan bertujuan untuk menunjang operasional dan meningkatkan efektifitas kerja dari institusi kepolisian. Tujuan dari penelitian ini membantu dalam pengambilan keputusan untuk mutasi jabatan dengan mengevaluasi nilai kriteria setiap anggota kepolisian. Dalam penelitian ini dilakukan pengolahan data kriteria penilaian dan data personel kepolisian yang diperoleh melalui hasil wawancara bersama kepala bagian sumber daya serta pengisian quisioner oleh 15 anggota kepolisian. Dari data tersebut dilakukan pengujian dengan menggunakan metode Profile Matching dan Multi Atribute Utility Theory. Hasil dari pengujian metode-metode tersebut adalah dihasilkan sebuah keputusan pada sebuah alternatif dengan nilai total sebesar 83,3%. Maka metode ini dibutuhkan untuk mengevaluasi penentuan mutasi jabatan sehingga menghasilkan keputusan terbaik.
Pemilihan Supplier Obat yang tepat dengan Metode Simple Additive Weighting
Cyntia Trimulia;
Sarjon Defit;
Gunadi Widi Nurcahyo
SITEKIN: Jurnal Sains, Teknologi dan Industri Vol 16, No 1 (2018): DESEMBER 2018
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24014/sitekin.v16i1.6735
Apotek adalah perusahaan yang bergerak di bidang farmasi berupa obat-obatan. Obat-obatan bersumber dari beberapa supplier. Dengan banyaknya supplier menyebabkan sulit dalam menentukan supplier yang bagus. Untuk menentukan supplier yang baik, maka dibutuhkan sebuah sistem pengambilan keputusan. Metode yang digunakan untuk mengambil keputusan dalam penelitian ini adalah Simple Additive Weighting (SAW). Data yang diolah berupa data-data kualitas, harga, petunjuk kegunaan, garansi, pemesanan, pemenuhan pesanan, dan pelayanan. Penilaian dapat dikembangan dengan kriteria yang akan di jadikan acuan untuk perengkingan supplier yang ada. Penilaian dari masing-masing kriteria diperoleh dari penilaian pemilik Apotek Mama Jakarta itu sendiri. Dengan adanya pemilihan supplier nantinya akan memudahan untuk membandingkan hasil kinerja supplier. Hasil yang didapatkan dengan menggunakan metode ini mampu mendapatkan supplier terbaik. Pengambilan keputusan ini membantu pemilik apotek dalam melakukan evaluasi terhadap supplier.
Diagnosis Penyakit Gigi dan Mulut Dengan Metode Forward Chaining
Afriosa Syawitri;
Sarjon Defit;
Gunadi Widi Nurcahyo
SITEKIN: Jurnal Sains, Teknologi dan Industri Vol 16, No 1 (2018): DESEMBER 2018
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24014/sitekin.v16i1.6733
Gigi dan mulut adalah organ tubuh yang sering mengalami gangguan penyakit yang disebabkan oleh kurangnya perhatian terhadap kesehatan gigi dan mulut. Untuk mengatasi gangguan penyakit gigi dan mulut, masyarakat membutuhkan konsultasi dengan dokter spesialis guna mendapatkan hasil diagnosis terhadap penyakit yang diderita. Untuk membantu pekerjaan dokter dalam melakukan diagnosis terhadap suatu penyakit maka dibutuhkan sebuah sistem yang memiliki kemampuan dan cara berfikir seperti dokter tersebut, hal ini bisa dilakukan dengan menggunakan sistem pakar (expert system). Didalam sistem pakar membutuhkan sebuah metode salah satunya adalah metode forward chaining. Penelitian ini menghasilkan diagnosis penyakit gigi dan mulut beserta perawatan penyakit tersebut. Dengan adanya penelitian ini dapat memberikan kemudahan kepada spesialis dalam mendiagnosa penyakit gigi dan mulut. Serta dapat memudahkan pasien dalam melakukan konsultasi.
SISTEM PAKAR PENENTUAN BAKAT ANAK DENGAN MENGGUNAKAN METODE FORWARD CHAINING
Febi Nur Salisah;
Leony Lidya;
Sarjon Defit
Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi Vol 1, No 1 (2015): Februari
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24014/rmsi.v1i1.1307
Saat ini masih banyak orang tua yang belum mengetahui bakat pada anak mereka. Sedikitnya jumlah pakar untuk berkonsultasi merupakan salah satu penyebab hal ini. Penelitian ini menggunakan sistem pakar untuk mengatasi permasalahan tersebut. Sistem pakar akan memindahkan kemampuan pakar tersebut ke dalam komputer. Bakat-bakat yang digunakan dalam penelitian ini adalah bakat anak menurut standar USOE America. Untuk mesin inferensi penelitian ini menggunakan forward chaining. Anak-anak yang diidentifikasi bakatnya adalah anak TK usia 4-6 tahun. Hasil analisa menunjukan bahwa sistem pakar ini membutuh 27 indikator, 83 variabel dan 33 rule. Berdasarkan hasil percobaan, sistem pakar ini berhasil mengidentifkasi bakat anak.
IMPLEMENTASI MOVING AVERAGE FILTER PADA MIKROKONTROLER SEBAGAI PEREDAM NOISE SENSOR PIEZO ELEKTRIK UNTUK MENDETEKSI GELOMBANG SEISMIK (GEMPA BUMI)
Zulharbi Zulharbi;
Firdaus Firdaus;
Yul Antonisfia;
Sarjon Defit
Prosiding Semnastek PROSIDING SEMNASTEK 2014
Publisher : Universitas Muhammadiyah Jakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Getaran akibat gempa bumi akan mengakibatkan adanya frekuensi gelombang seismik denganfrekuensi rendah (0Hz - 20Hz), untuk mendeteksi keberadaan frekuensi gelombang seismiktersebut dapat menggunakan sensor piezo elektrik. Piezo elektrik adalah sebuah sensor seismikyang mempunyai getaran gempa beramplitudo rendah dan sangat mudah terkontaminasi noisesehingga dibutuhkan filter untuk meredam sinyal noise tersebut. Moving Average (MA) filteradalah suatu metode yang sederhana dan berguna untuk menapis derau acak yang terdapat padaderau asli. MA filter bekerja dengan cara meratakan sejumlah titik tertentu dari isyarat masukanuntuk menghasilkan tiap titik dari isyarat luaran. Gelombang seismic (getaran buatan) padapenelitian ini adalah dengan memberikan amplitudo sensor piezo PVDF antara 3mm, 5mm, 7mm,9mm dan 12mm pada frekuensi 2 Hz (konstan). Sensor piezo mendeteksi kekuatan getaran buatandengan menggunakan Moving Average Filter yang menghasilkan nilai SNR (signal to noiseratio) lebih kecil dibandingkan tidak menggunakan MAF Nilai PGA (peak groundacceleration) dalam satuan grafitasi akan tinggi pada saat sinyal amplitude getaran yangdiberikan juga tinggi (PGA = 0,01G pada saat amplitude getaran 3mm dan 1,43G pada saatamplitude getaran 12 mm).
Penerapan Algoritma C4.5 untuk Klasifikasi Data Rekam Medis berdasarkan International Classification Diseases (ICD-10)
Yudha Aditya Fiandra;
Sarjon Defit;
Yuhandri Yuhandri
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 1 No 2 (2017): Agustus 2017
Publisher : Ikatan Ahli Informatika Indonesia (IAII)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (579.053 KB)
|
DOI: 10.29207/resti.v1i2.48
Abstract The medical record data is the patient's current record of medical records, the medical record data only being data stacked and not traced to generate useful knowledge for the hospital. This study can process the medical record data to classify the disease that occurs in sleeping sickness based on ICD-10. The method used in this research is C4.5 algorithm method by using attribute of international disease code as attribute of destination label as many as 21 international disease group, that is: A00-B99 up to Z00-Z99. This study yields a decision of the value code, C4.5 code can represent as many as 14 attribute values ​​of disease code objectives and data percentage that read more than 66%. The conclusion of this research is C4.5 algorithm help classify international disease code based on ICD-10 and decision tree making which can give information of any disease that often happened at hospital Keywords: data mining, classification, C4.5, medical records, ICD-10
Analyzing the use of Social Media by Fashion Designers with K-Means and C45
Abulwafa Muhammad;
Sarjon Defit
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 21 No 2 (2022)
Publisher : LPPM Universitas Bumigora
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (354.451 KB)
|
DOI: 10.30812/matrik.v21i2.1432
Social media is one part of digital marketing that is used for the development of marketing business products known as social-marketing. The use of social media as social marketing is still managed conventionally and has not implemented business social media. This study was conducted to analyze the clusters and classifications of the use of social media by fashion designers in West Sumatra in marketing their products. This analysis uses the k-Means algorithm and c45 uses the Rapidminer application for the fashion designer industry in West Sumatra. Data is collected from Instagram and Facebook of fashion designers. The data analyzed by K-Means resulted in 3 clusters of social media use, namely 3 less active clusters, 12 active clusters and 1 very active, then classification using the C45 method resulted in a decision tree that described the most and the least in using social media. This study resulted in grouping and classifying variables from whether or not the use of social media in social marketing for the fashion designer industry players in West Sumatra was good or not. The results of this study can be used as a reference for developing integrated marketing for West Sumatra fashion designers.
ALGORITMA C4.5 UNTUK PREDIKSI BIMBINGAN SISWA BERDASARKAN TIPOLOGI HIPPOCRATES-GALENUS
Boy Sandy Dwi Nugraha.H;
Sarjon Defit;
Gunadi Widi Nurcahyo
Jurnal Teknoif Teknik Informatika Institut Teknologi Padang Vol 11 No 1 (2023): TEKNOIF APRIL 2023
Publisher : ITP Press
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.21063/jtif.2023.V11.1.1-8
The type of personality possessed by a student belived affect their behavior, whether positively or negatively, and if left unattended, it will harm the student. Student guidance is necessary to provide appropriate guidance for the student. This study aims to predict student guidance based on personality by using student data at SMP 1 Negeri Tembilahan. The data collection process was obtained from the BK teacher at SMPN 1 Tembilahan for grade 8 and grade 7. Grade 8 will be used as training data and grade 7 will be used as testing data. 5 parameters were selected for the prediction process and 1 label as the target class. The method used is the C4.5 algorithm to build a decision tree and obtain prediction rules. The results of the study were obtained using Confusion Matrix testing with a prediction accuracy rate of 70%. The ultimate goal of the student guidance prediction process is to have a higher percentage of "Yes" (need guidance) than "No" (don't need guidance) in the prediction results. Therefore, it can be stated that the prediction process model with the C4.5 algorithm is suitable for determining good decision-making results in terms of prediction, and the researcher hopes that after obtaining these results, the BK teacher at SMPN 1 Tembilahan can provide guidance as soon as possible and provide necessary guidance to students who need it.
IMPLEMENTASI SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN ALAT KONTRASEPSI DENGAN METODE AHP DAN TOPSIS (STUDI KASUS DI PUSKESMAS GUNUNG LABU)
Pipin Refina Afindania;
Sarjon Defit;
Sumijan
Jurnal Teknoif Teknik Informatika Institut Teknologi Padang Vol 12 No 1 (2024): TEKNOIF APRIL 2024
Publisher : ITP Press
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.21063/jtif.2024.V12.1.1-9
The problem that is often faced is that many mothers of couples of childbearing age do not understand how to choose a contraceptive method that is suitable for use. To address this problem among couples of reproductive age in choosing the most appropriate contraceptive method, the Analytical Hierarchy Process (AHP)-Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is proposed to be utilized. It is expected to be beneficial in aiding the selection of a suitable contraceptive method for users. The objective of this research is to implement the AHP-TOPSIS method in a decision support system for choosing contraceptive methods for couples of reproductive age at the Gunung Labu Community Health Center. The results of the analysis using the AHP-TOPSIS method indicate that the appropriate contraceptive methods for couples of reproductive age are Implan, IUD, Birth Control Injection, and Birth Control Pills. The combination of AHP-TOPSIS in contraceptive method selection yields the conclusion that the Decision Support System (DSS) built in this research is expected to facilitate midwives in recommending contraceptive methods for couples of reproductive age. AHP method is employed to calculate the weights of each contraceptive method criterion. The results of the priority weight calculations for all criteria used in this study yielded a Consistency Index (CI) of 0.07. The analysis using the AHP-TOPSIS method resulted in Implan, IUD, Birth Control Injection, and Birth Control Pills being identified as the appropriate contraceptive methods for couples of reproductive age.
Implementasi Algoritma K-Means Guna Pengelompokkan Data Penjualan Berdasarkan Pembelian
Lubis, Siti Sahara;
Sarjon Defit;
Sumijan
Jurnal KomtekInfo Vol. 11 No. 4 (2024): Komtekinfo
Publisher : Universitas Putra Indonesia YPTK Padang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.35134/komtekinfo.v11i4.557
Information technology can help solve problems faced by humans by facilitating performance. Information technology and information systems are difficult to separate in the business world. Data mining is the core of the KDD process, which involves inferring algorithms that explore data, developing models and finding previously unknown patterns. KDD is often referred to as knowledge discovery in databases. The KDD process generally consists of 5 stages, namely data selection, pre-processing/cleaning, transformation, data mining and interpretation/evaluation. K-Means is a clustering algorithm in data mining to be able to produce groups of large amounts of data with a point-based partition method with fast and efficient computing time. Clustering is the process of dividing objects from a data set into several homogeneous clusters. The main purpose of the cluster method is to group a number of data/objects into clusters (groups) so that each cluster will contain data that is as similar as possible. This study aims to provide real solutions to UD. Martua in order to know which items are selling well and which items are not selling well so that the object can know which items need to be added to the stock and which items need to be reduced. The method used in this study is the K-Means method with stages, namely data selection, pre-processing, data transformation, information extraction and evaluation of results. The data consists of 30 item data, there are 8 as members of C1 and are best-selling items and 22 as members of C2 and are not selling items. The conclusion that can be obtained from this study is that the K-Means method can group items at UD. Martua. This study shows that the implementation of the K-Means method with the support of the RapidMiner application is effective in grouping item data at UD. Martua.