Claim Missing Document
Check
Articles

Found 11 Documents
Search

PENINGKATAN KAPASITAS PROFESIONALISME GURU MATEMATIKA SMA/SMK/MA MUHAMMADIYAH SE-KOTA YOGYAKARTA Purwadi, Joko; Thobirin, Aris
Jurnal Pemberdayaan: Publikasi Hasil Pengabdian Kepada Masyarakat Vol 3, No 3 (2019)
Publisher : Universitas Ahmad Dahlan, Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (140.103 KB) | DOI: 10.12928/jp.v3i3.746

Abstract

Profesionalisme dalam mendidik siswa sangat diperlukan untuk kemajuan suatu bangsa, secara khusus pada mata pelajaran matematika di tingkat SMA/SMK/MA Muhammadiyah. Guru berhak memperoleh kesempatan untuk meningkatkan kompetensi, memperoleh pelatihan, dan mengembangkan profesi dalam bidangnya. Dari sisi kewajiban, guru wajib memiliki kualifikasi akademik, kompetensi, sertifikat pendidik, sehat jasmani dan rohani, serta memiliki kemampuan untuk mewujudkan tujuan pendidikan nasional. Salah satu upaya dalam menyetarakan dan menilai kinerja guru dalam hal keprofesionalan, pemerintah menggelar Uji Kompetensi Guru (UKG), yang bertujuan untuk pemetaan kompetensi. Untuk mencapai keprofesionalan guru dan kelulusan, diperlukan pelatihan kepada guru sebelum melakukan UKG. Pelatihan ini diselenggarakan dalam waktu 2 hari dengan materi Kalkulus dan Statistika. Peserta pada kegiatan ini berasal dari 12 Sekolah di lingkungan Muhammadiyah se-Kota Yogyakarta dan bekerjasama dengan Majelis Pendidikan Dasar dan Menengah PDM Yogyakarta.
PELABELAN ANTI AJAIB JARAK PADA SUATU GRAF PETERSEN DIPERUMUM Wijayanti, Dian Eka; Thobirin, Aris
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 12 No 1 (2020): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.2457

Abstract

ABSTRACT. One type of graph labeling is distance labeling which is labelled a graph based on the distance between the vertices. This distance labeling is called distance magic labeling (magic labeling distance) if each vertex has the same distance labeling weights. The distance labeling is called distance antimagic labeling if each vertex has different distance labeling weights, formed an arithmetic progressive a, a+d, a+2d, ... ,a+(n-1)d, where d > 0 . This paper discusses the anti-magic labeling distance on generalized Petersen graph, denote G = P (n, m) with n ≥ 3, 1 ≤ m <n / 2, a regular graph with degree 3 that has 2n vertices and 3n edges. More over, this paper also discuss about (a, d)-distance anti-magic labeling on generalized Petersen graph.Keywords: generalized Petersen graph, distance labeling, distance antimagic labeling. ABSTRAK. Salah satu jenis pelabelan pada graf adalah pelabelan jarak yang merupakan pelabelan graf berdasarkan jarak antara titik-titiknya. Pelabelan jarak ini disebut distance magic labeling (pelabelan ajaib jarak) jika setiap titik mempunyai bobot pelabelan jarak yang sama. Pelabelan jarak ini disebut (a, d)-distance antimagic labeling (pelabelan (a,d)-anti ajaib jarak) jika setiap titik mempunyai bobot pelabelan jarak yang berbeda, membentuk suatu deret aritmatika progresif a, a+d, a+2d, ... ,a+(n-1)d, dengan nilai d > 0. Tulisan ini membahas tentang pelabelan anti ajaib jarak pada graf petersen diperumum yaitu G= P(n, m) dengan n ≥ 3, 1 ≤ m <n/2 suatu graf teratur berderajat 3 yang mempunyai 2n titik dan 3n sisi. Lebih lanjut, tulisan ini juga membahas tentang pelabelan (a,d)-anti ajaib jarak pada suatu graf petersen diperumum.Kata Kunci: graf petersen diperumum, pelabelan jarak, pelabelan anti ajaib jarak.
Performance Analysis of Resampling Techniques for Overcoming Data Imbalance in Multiclass Classification Larasati, Anggit; Surono, Sugiyarto; Thobirin, Aris; Dewi, Deshinta Arrova
JUITA: Jurnal Informatika JUITA Vol. 13 Issue 1, March 2025
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v13i1.25270

Abstract

In the digital era, the development of modern technology has brought significant transformation to the medical world. The main objective of this research is to identify the performance of deep learning models in classifying kidney disease. By integrating the Convolutional Neural Network model, the performance of the classification process can be analyzed effectively and efficiently. However, data imbalance dramatically affects the performance evaluation of a model, requiring data resampling techniques. This research applies two resampling techniques, bootstrap-based random oversampling and random undersampling, to training data and adds data augmentation to increase image variations to prevent model overfitting. The architecture uses MobileNetV2, which compares hyperparameter fine-tuning in three optimizers. This research shows that the performance of MobileNetV2, which implements the bootstrap-based random oversampling technique, has the highest accuracy compared to random undersampling and no resampling methods. The oversampling technique with the RMSprop optimizer produced the highest accuracy, namely 95%. With precision, recall, and F-1 score, respectively, 0.93, 0.95, 0.94. The accuracy of oversampling with the Adam and Nadam optimizer is 94%. So, the contribution of this research is by applying bootstrap-based oversampling techniques and adding data augmentation to produce good model performance to be used to classify medical images.
Klasifikasi penentuan status gizi balita dengan metode naive bayes Abdillah, Alfiyyah 'Ainul; Thobirin, Aris; Wijayanti, Dian Eka
Jurnal Ilmiah Matematika Vol. 11 No. 1 (2024)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jim.v11i1.30139

Abstract

Klasifikasi merupakan pengelompokan untuk memprediksi suatu kelas berdasarkan data dan data-data tersebut memiliki table atau atribut. Salah satu metode dalam klasifikasi adalah naïve bayes. Metode naïve bayes banyak digunakan dalam berbagai bidang penelitian. Pada bidang kesehatan, metode naïve bayes digunakan dalam penelitian kesehatan anak. Salah satu penelitiannya membahas tentang gizi pada bayi dibawah umur lima tahun. Pada penelitian klasifikasi status gizi balita dengan metode naive bayes digunakan untuk melakukan klasifikasi data pada kelas tertentu. Metode naive bayes diterapkan pada penelitian ini untuk mengidentifikasi data balita. Data balita tersebut kemudian dianalisis untuk pembuatan model. Setelah pembuatan model kemudian menentukan model yang terbaik. Selanjutnya, model tersebut digunakan untuk memprediksi data balita di Puskesmas Ponjong I. Hasil penelitian menunjukkan bahwa pembagian data dengan perbandingan 90% data training dan 10% data testing menghasilkan akurasi sebesar 82,14%. Model klasifikasi ini mampu memprediksi status gizi balita dengan lebih baik daripada pembagian data lainnya. Hasil prediksi menunjukkan bahwa terdapat 14 anak dengan status gizi baik, 2 anak dengan gizi kurang, dan 2 anak dengan gizi lebih. Informasi ini memiliki implikasi penting bagi puskesmas, karena puskesmas dapat melakukan perawatan dan pengawasan lebih fokus terhadap kelima balita yang diklasifikasikan memiliki masalah gizi yang buruk.
Optimizing EfficientNet for imbalanced medical image classification using grey wolf optimization Khotimah, Khusnul; Surono, Sugiyarto; Thobirin, Aris
Computer Science and Information Technologies Vol 6, No 2: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/csit.v6i2.p112-121

Abstract

The advancement of deep learning in computer vision has result in substantial progress, particularly in image classification tasks. However, challenges arise when the model is applied to small and unbalanced datasets, such as X-ray data in medical applications. This study aims to improve the classification performance of fracture X-ray images using the EfficientNet architecture optimized with grey wolf optimization (GWO). EfficientNet was chosen for its efficiency in handling small datasets, while GWO was applied to optimize hyperparameters, including learning rate, weight decay, and dropout to improve model accuracy. Random cropping, rotation, flipping, color jittering, and random erasing, were used to expand the diversity of the dataset, and class weighting is applied to overcome class imbalance. The evaluation uses accuracy, precision, recall, and F1-score metrics. The combination of EfficientNetB0 and GWO resulted in an average 4.5% improvement in model performance over baseline methods. This approach provides benefits in developing deep learning methods for medical image classification, especially in dealing with small and imbalanced datasets.
Machine Learning-Based Early Breast Cancer Detection Through Temperature and Color Skin with Non-Invasive Smart Device Salsabila, Sona Regina; Surono, Sugiyarto; Ibad, Irsyadul; Prasetyo, Eko; Subrata, Arsyad Cahya; Thobirin, Aris
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 10 No. 4 (2024): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v10i4.30340

Abstract

Breast cancer remains a significant global health issue, affecting millions of women and often leading to late-stage diagnoses. Traditional diagnostic methods, such as mammograms, ultrasounds, and biopsies, are effective but can be costly, invasive, and not widely accessible, causing delays in detection and treatment.  This research highlights the potential of using machine learning models with physiological data for early breast cancer detection. By capturing subtle physiological variations from a smart bra, the device allows real-time, non-invasive monitoring, offering a preventive solution that reduces the need for frequent clinical visits. The data were collected from a modified mannequin designed to simulate conditions related to breast cancer. To classify cancerous conditions based on temperature and color data, three machine learning models were evaluated.  The Random Forest (RF) model proved to be the most effective, achieving 89% accuracy, 86.11% precision, 88.57% recall, and an F1-score of 87.33%, demonstrating strong performance in identifying complex patterns. The Support Vector Machine (SVM) achieved an accuracy of 81.25%, precision of 85.7%, recall of 80%, and an F1-score of 82.64%. The Multilayer Perceptron (MLP) exhibited an accuracy of 72%, precision of 69.69%, recall of 65.71%, and an F1-score of 67.52%, suggesting potential but requiring further optimization.  These models serve as valuable tools to assist medical professionals in early screening efforts. Future research should aim to improve the models’ generalizability by expanding the dataset, utilizing data augmentation, applying transfer learning, and incorporating additional variables. Clinical validation and human trials are essential next steps to evaluate the system's effectiveness.
Enhancing Multi-Class Classification of Non-Functional Requirements Using a BERT-DBN Hybrid Model Suris, Badzliana Aqmar; Thobirin, Aris; Surono , Sugiyarto; Abdulnazar, Mohamed Naeem Antharathara
INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi Vol 9 No 2 (2025): August 2025
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/intensif.v9i2.24637

Abstract

Background: Software requirements classification is essential to group Non-Functional Requirements (NFR) into several aspects, such as security, usability, performance, and operability. The main challenges in NFR classification are data limitations, text complexity, and high generalization needs. Objective: This research seeks to create a classification model using a hybrid of BERT and DBN, optimize hyperparameters, and improve data representation. Methods: A BERT and DBN-based approach is used, where DBN enhances BERT's ability to extract hierarchical features. Bayesian Optimization determines the optimal hyperparameters and data augmentation is applied to enrich the dataset variation. The model is tested on the PROMISE dataset consisting of 625 data. Results: The BERT-DBN model achieves 95% accuracy on the baseline configuration and 94% on the extensive configuration, better than the previous model, BERT-CNN. The model shows stability without any indication of overfitting. Conclusion: The combination of data augmentation, hyperparameter optimization, and DBN's ability to capture hierarchical patterns improves the accuracy of NFR classification, making it more effective than existing methods, and is expected to enhance text-based classification for software requirements.
Perbandingan 5 Jarak K-Nearest Neighbor pada Analisis Sentimen Mujhid, Almuzhidul; Thobirin, Aris; Firdausy, Salma Nadya; Surono, Sugiyarto; Rahmadani, Lanova Ade
Jurnal Ilmiah Matematika Vol 8, No 2 (2021)
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/konvergensi.v0i0.23170

Abstract

K-Nearest Neighbor (KNN) merupakan algoritma yang biasa digunakan untuk klasifikasi. Penelitian ini menggunakan ulasan aplikasi Maxim di Google Play Store. Pengguna yang sudah mengunduh aplikasi Maxim berhak memberikan ulasan di Google Play Store guna berbagi informasi untuk pengguna lain. Implementasi K-Nearest Neighbor (KNN) terhadap Sentiment Analysis ulasan aplikasi Maxim dapat digunakan untuk menentukan kelas ulasan bernilai positif, neutral, atau negatif. Peneliti melakukan perbandingan 5 jarak yang berbeda untuk metode KNN yaitu jarak Euclidean, Manhattan, Minkowski, Chebyshev dan Canberra. Pengujian yang telah dilakukan memberikan hasil akurasi pada klasifikasi KNN dengan jarak yang berbeda, memberikan hasil akurasi yang berbeda-beda, yaitu jarak Euclidean  84 persen, jarak Manhattan  79 persen, jarak Minkowski 84 persen, jarak Chebyshev  7 persen dan jarak Canberra =44 persen.
Hybrid feature fusion from multiple CNN models with bayesian-optimized machine learning classifiers Rismawati, Dewi; Surono, Sugiyarto; Thobirin, Aris
Computer Science and Information Technologies Vol 6, No 3: November 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/csit.v6i3.p315-325

Abstract

Information technology advancements have created big data, necessitating efficient techniques to retrieve helpful information. With its capacity to recognize and categorize patterns in data, especially the growing amount of picture data, deep learning is becoming a viable option. This research aims to develop a medical image classification model using chest X-Ray with four classes, namely Covid-19, Pneumonia, Tuberculosis, and Normal. The proposed method combines the advantages of deep learning and machine learning. Three pre-trained CNN models, VGG16, DenseNet201, and InceptionV3, extract features from images. The features generated from each model are fused to enhance the relevant information. Furthermore, principal component analysis (PCA) was applied to reduce the dimensionality of the features, and Bayesian optimization was used to optimize the hyperparameters of the machine learning algorithms support vector machine (SVM), decision tree (DT), and k-nearest neighbors (k-NN). The resulting classification model was evaluated based on accuracy, precision, recall, and F1-score. The results showed that FF-SVM, which is the proposed model, achieved an accuracy of 98.79% with precision, recall, and F1-score of 98.85%, 98.82%, and 98.84%, respectively. In conclusion, fusing feature extraction from multiple CNN models improved the classification accuracy of each machine-learning model. It provided reliable and accurate predictions for lung image diagnosis using chest X-Ray.
Comparative study of unsupervised anomaly detection methods on imbalanced time series data Hanifa, Riza Aulia; Thobirin, Aris; Surono, Sugiyarto
Jurnal Ilmiah Kursor Vol. 13 No. 2 (2025)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/kursor.v13i2.431

Abstract

Anomaly detection in time series data is essential, especially when dealing with imbalanced datasets such as air quality records. This study addresses the challenge of identifying point anomalies rare and extreme pollution levels within a highly imbalanced dataset. Failing to detect such anomalies may lead to delayed environmental interventions and poor public health responses. To solve this, we propose a comparative analysis of three unsupervised learning methods: K-means clustering, Isolation Forest (IForest), and Autoencoder (AE), including its LSTM variant. These algorithms are applied to monthly air quality data collected in 2023 from 2,110 cities across Asia. The models are evaluated using Area Under the Curve (AUC), Precision, Recall, and F1-score to assess their effectiveness in detecting anomalies. Results indicate that the Autoencoder and Autoencoder LSTM outperform the others with an AUC of 98.23%, followed by K-means (97.78%) and IForest (96.01%). The Autoencoder’s reconstruction capability makes it highly effective for capturing complex temporal patterns. K-means and IForest also show strong results, offering efficient and interpretable solutions for structured data. This research highlights the potential of unsupervised anomaly detection techniques for environmental monitoring and provides practical insights into handling imbalanced time series data.