Claim Missing Document
Check
Articles

Found 12 Documents
Search

The Performance of Geosynthetic Reinforcement Road Pavement Over Expansive Soil Subgrade Hairulla, .; Harianto, Tri; Djamaluddin, Abdul Rahman; Arsyad, Ardy
Civil Engineering Journal Vol 10, No 12 (2024): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-12-020

Abstract

One of the problems faced in infrastructure development, especially roads, is problematic soils, including expansive soils, which are distributed around 20% of national road construction in Indonesia. Geosynthetics are reinforcement materials that can be used to overcome problematic soils. The study aimed to determine the behavior of expansive soil with geosynthetic reinforcement against swelling potential and swelling pressure in the wetting cycle. The research utilized an experimental approach involving three test concepts. The first was a control test without reinforcement. The second included a combination of geogrid, geotextile, and geomembrane layers, while the third utilized an H2Rx reinforcement layer. Analysis was carried out on the development potential and pressure; the test was carried out for 57 days using displacement sensors and pressure sensors, and data recording was carried out every 5 seconds using a computer. The findings from the results of this study indicated that the presence of reinforcement using a geosynthetic reinforcement layer can overcome the behavior that occurs in expansive soils with swelling potential and swelling pressure. The novelty of this research is the inclusion of a geosynthetic reinforcement layer on expansive soil combined with a drainage layer in the pavement subgrade. Doi: 10.28991/CEJ-2024-010-12-020 Full Text: PDF
Examining the Erosion Resistance of Cement-Bentonite Barriers: Effects of Confining Pressure and GGBS Content Walenna, Muhammad A.; Royal, Alexander; Jefferson, Ian; Ghataora, Gurmel; Harianto, Tri; Arsyad, Ardy; Hanami, Zarah A.
Civil Engineering Journal Vol. 11 No. 6 (2025): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2025-011-06-08

Abstract

This study investigates the erosion resistance of cement-bentonite (CB) barriers, focusing on the role of varying levels of Ground Granulated Blast Furnace Slag (GGBS) content and confining pressure, crucial for infrastructure such as dams and levees. Employing a bespoke modified triaxial erosion testing setup, the research assesses how different confining pressures, GGBS proportions, and curing periods impact the erosion resistance of CB materials under varying stress conditions. Results demonstrate that increasing GGBS proportions enhances erosion resistance by improving the CB matrix microstructure, while higher confining pressures generally increase resistance. However, combinations of high confining pressure and erosive force can lead to barrier material failure, with buckling failure occurring at elevated pressures (100 kPa and above), highlighting a trade-off between enhancing erosion resistance and maintaining structural stability. Extended curing periods allow for material strength development, enhancing stability, yet delayed erosion phases at higher confining pressures and longer curing durations suggest gradual crack formation, potentially leading to hydraulic fracturing. This underscores the need for meticulous design considerations regarding load conditions due to significant failure modes such as buckling. The findings emphasize that the strategic combination of GGBS content, confining pressure, and curing period is crucial in optimizing barrier performance, highlighting the importance of selecting optimal material formulations and operational parameters to maximize erosion resistance and ensure the longevity and safety of civil engineering structures.