Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JURNAL MEDIA INFORMATIKA BUDIDARMA

Estimasi Volume Buah Kiwi Menggunakan Metode Pencitraan dan Aturan Simpson Tomy Suherly; Minarni Shiddiq
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 4, No 3 (2020): Juli 2020
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v4i3.2144

Abstract

Volume is one of important quantities that have been applied to fruit sorting based on size. Imaging method or computer vision is a simple non destructive method that has been proposed to measure fruits volume. This study was aimed to estimate the volumes of kiwi fruits using Computer Vision imaging method and compared to a water displacement method. The samples were 20 green kiwi fruits (Actinidia deliciosa). A smartphone camera was used to record the kiwifruit images and Python based program to drive the camera and process the images.  Images resulted in Computer Vision are two dimensions (2D) images. The 1/3 rd Simpson rule was employed to determine the volume of kiwi fruits based on the volume integration of a spinning object where surface image of kiwi was divided into 8 parts and then summed. The results show that the 2D imaging method assisted by the Simpson rule was successfully able to determine the kiwi fruit volumes with 4.57 % average difference percentage compared to the water displacement method. This was about 4.97 cm3 of average volume difference of 20 samples. The sample volumes measured using this method ranges from 82,48 cm3 - 126,85 cm3. These results will be one of steps toward the development of machine vision for fruit sorter based on volume
Pencitraan Hiperspekral untuk Membedakan Asal Tanah Tumbuh Dari Tandan Buah Segar Kelapa Sawit Dina Veranita; Minarni Shiddiq; Feri Candra; Saktioto Saktioto; Mohammad Fisal Rabin
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 4, No 3 (2020): Juli 2020
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v4i3.2219

Abstract

Hyperspectral imaging is a non destructive method that has been used to evaluate internal characteristics of fruits and vegetables. Plant genetics, soil characteristics, and plant management are some of key factors to define the quality of oil palm fresh fruit bunches (FFB) produced. This research was aimed to discriminate the Tenera oil palm FFBs produced by oil palm trees grown from mineral soil and peat soil using a hyperspectral imaging system which utilized a Specim V10 spektrograf. The discrimination was based on their ripeness level, mesocarp firmness, and classification using K-mean clustering. The samples consisted of 61 mineral soil FFBs and 60 peat soil FFBs with three ripeness levels as unripe, ripe, and overripe. Hyperspectral images were recorded and processed using Matlab programs. The spectral reflectance intensities showed the discrimination between both origin soils at wavelength ranges of 700 nm  900 nm. The results also showed higher reflectance intensities of peat soil FFBs than mineral soil FFBs. Correspondingly, Fruit firmness of peat soil FFBs are higher than mineral soil FFBs. Classification using K- mean clustering between reflectance intensities and fruit firmness showed significant clusters for three ripeness levels. These results will be useful for an oil palm FFB sorting machine based on spectral imaging method