Eddy Ryansyah
Universitas Singaperbangsa Karawang

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

SYSTEMATIC LITERATURE REVIEW (SLR): PENYALAHGUNAAN WIFI PUBLIK TERHADAP ORANG AWAM YANG ADA DI INDONESIA Eddy Ryansyah; Agung Susilo Yuda Irawan
Jurnal Informatika Dan Tekonologi Komputer (JITEK) Vol. 3 No. 1 (2023): Maret : Jurnal Informatika dan Tekonologi Komputer
Publisher : Pusat Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/jitek.v3i1.918

Abstract

The use of the internet on computer network devices in the current technological era certainly very easy for us in daily life to work and other activities in cyberspace. There are so many places to eat or other public places that use computer network devices, namely wifi so that visitors feel at home or feel happy because they have the facilities that are needed by them, namely the internet. However, it is undeniable that there are public wifi devices that have a negative impact because they are free. One solution to prevent internet network users from using negatively charged public wifi can be done by understanding what steps must be taken before and after accessing public wifi. Therefore, the purpose of this study is to provide understanding and learning to ordinary people in Indonesia to minimize or rather eradicate the use of the internet network on public wifi which has a negative impact in public spaces. In realizing the above, the author uses the method of taking 30 journal papers that have been published through Google Scholar with a range of years between 2018 and 2022 to be researched and analyzed using the SLR (Systematic Literature Review) method. SLR is a systematic method used to review a topic in the form of a journal paper to provide opinions on solving problems. Based on this research, it was found that public wifi in computer network learning can improve the problem-solving ability of ordinary users. Based on the literature review conducted, the level of understanding of ordinary people in Indonesia can be developed by learning computer networks on social media and in articles on the internet.
Survei Tingkat Pemahaman Mahasiswa Mengenai Ancaman Keamanan Sistem pada Facebook Eddy Ryansyah; Muhamad Yoga Fauzan; Reymen Maulana; Chaerur Rozikin
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) Vol 7, No 3 (2023)
Publisher : Universitas Indraprasta PGRI Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/string.v7i3.15090

Abstract

Facebook is an example of a platform of social media and has become one of the best-selling media in Indonesia and even in the world. It may be said one person in the world has one facebook account. The platform is used as a forum for users to interact with friends, relations, colleagues, and even families outside the city. This social media application provides many facilities as follows, sharing statuses, in the form of texts, images, and videos. In this research, the researcher explores the theme of threats on facebook including phishing, link scam, and clickjacking. The researcher also analyzes the causes, how the lurking threats work and how to deal with or prevent them. The research uses a quantitative approach. The data collection method is carried out using a survey and a library research. The samples collected in the research are 58 respondents who are all students having used Facebook. Based on the research results, the researchers conclude that most respondents do not understand or even know the various system security threats on Facebook.
SISTEM PENYIRAMAN TANAMAN OTOMATIS MENGGUNAKAN LOGIKA FUZZY DENGAN TEKNOLOGI INTERNET OF THINGS BERBASIS ESP8266 DAN APLIKASI BLYNK Ridho Alamsyah; Eddy Ryansyah; Andari Yasinta Permana; Ratna Mufidah
Jurnal Informatika dan Teknik Elektro Terapan Vol 12, No 2 (2024)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v12i2.4007

Abstract

Penyiraman tanaman menjadi aspek krusial dalam menjaga suhu dan kelembaban tanah guna mendukung pertumbuhan optimal. Di Indonesia, banyak petani masih mengandalkan metode manual sehingga proses penyiraman belum optimal. Oleh karena itu, penulis mengusulkan sebuah alat penyiraman otomatis untuk membantu proses penyiraman menjadi lebih efisien. Penelitian ini dibuat dengan menerapkan metode logika fuzzy menggunakan komponen ESP8266 dan aplikasi Blynk dengan teknologi IoT. Penelitian ini menghasilkan perangkat penyiram otomatis berdasarkan sensor kelembaban tanah dengan penambahan notifikasi terhadap smartphone. Dalam pengujian alat, akan memunculkan informasi tentang kelembaban tanah yang akan tampak di dashboard aplikasi Blynk, jika tanaman tersebut memiliki kelembaban tertentu pada tanah dan menghasilkan keputusan terhadap air yang akan diberikan, maka akan mendapatkan email dari platform Blynk. Hasil sensor kelembaban akan memengaruhi output, jika hasil sensor menunjukkan tanah kering maka luaran yang dihasilkan adalah “nyala” yang menandakan bahwa air akan mengalir untuk menyirami tanah. Sedangkan jika hasil sensor menunjukkan tanah lembab ataupun basah maka output yang dihasilkan adalah “mati” yang menandakan bahwa air akan berhenti menyirami tanah atau tidak mengalir.
IMPLEMENTASI OBJECT DETECTION DALAM KLASIFIKASI SAMPAH UNTUK MENINGKATKAN EFISIENSI PENGELOLAAN LIMBAH Anggara, Jerry; Ryansyah, Eddy; Arif Dermawan, Budi
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 3 (2025): JATI Vol. 9 No. 3
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i3.13813

Abstract

Pengelolaan sampah di Indonesia masih menghadapi tantangan besar dengan produksi mencapai 68.5 juta ton per tahun, sementara tingkat daur ulang masih rendah. Salah satu kendala utama adalah proses pemilahan yang masih dilakukan secara manual menyebabkan inefisiensi, tingginya biaya operasional, serta meningkatnya pencemaran lingkungan akibat pembuangan sampah yang tidak terkelola dengan baik. Minimnya kesadaran masyarakat dalam memilah sampah semakin memperburuk kondisi ini. Untuk mengatasi permasalahan tersebut, penelitian ini mengembangkan sistem deteksi dan klasifikasi sampah berbasis algoritma YOLOv8 yang dikenal dengan kecepatan dan akurasi tinggi dalam mendeteksi objek. Model dilatih menggunakan dataset yang terdiri dari 1.822 gambar dalam enam kategori sampah yaitu kertas, plastik, kardus, metal, gelas, dan sampah organik yang diperoleh dari berbagai sumber termasuk Roboflow dan TrashNet. Hasil evaluasi menunjukkan bahwa model memiliki tingkat keakuratan yang cukup tinggi dengan nilai mAP (mean Average Precision) sebesar 0.905. Sistem ini di-deploy dalam bentuk web menggunakan Flask yang dilengkapi dengan fitur unggah gambar/video serta menampilkan hasil deteksi dengan tampilan yang informatif dan mudah digunakan. Penelitian ini menunjukkan bahwa object detection berbasis YOLOv8 dapat mendukung pengelolaan sampah secara lebih efisien.
Sistem Pendeteksi Kebocoran LPG Berbasis IoT Menggunakan Metode Fuzzy Logic Mamdani dengan Integrasi Aplikasi Blynk Mahitala, Zadan Fairuz; Ryansyah, Eddy; Permana, Andari Yasinta; Susilawati, Susilawati
Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM) Vol 5 No 2 (2025): JAKAKOM Vol 5 No 2 SEPTEMBER 2025
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33998/jakakom.2025.5.2.2385

Abstract

Cooking activities are part of the daily routine, especially for housewives. However, incidents of kitchen fires frequently occur due to forgotten actions such as falling to turn off the stove or undetected leaks in Liquified Petroleum Gas (LPG) systems. This project aims to provide an early warning system to prevent LPG gas leaks in residental areas, particularly where public awareness and timely detection are still lacking. The proposed device integrates Internet of Things (IoT) technology to enable real-time monitoring. The methodology employed in this study utilizes a mamdany fuzzy logic algorithm, in which the degree of truth is determined based on weighted values. This research is expected to contribute in public knowledge and serve as a preventive measure of households in anticipating gas leak-induced fires. Additionally, the system aims to support firefighters and family members by providing an efficient early warning mechanism.
Pendeteksi Bahasa Isyarat Menggunakan TensorFlow dengan Metode Convolutional Neural Network Saputra, Reza Aditya; Ryansyah, Eddy; Setiawan, Fikri Maulana; Rozikin, Chaerur
Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM) Vol 5 No 2 (2025): JAKAKOM Vol 5 No 2 SEPTEMBER 2025
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33998/jakakom.2025.5.2.2386

Abstract

Sign language recognition plays a vital role in facilitating communication for individuals with hearing impairments. This study proposes a Convolutional Neural Network (CNN) model trained to recognize patterns in sign language images with the aim of improving the accuracy and efficiency of sign language recognition systems. The model was trained in two stages with the first training session achieving a validation accuracy of around 63%, while the second training session yielded an impressive validation accuracy exceeding 92% at epoch 29. This significant improvement demonstrates the model’s ability to effectively learn and generalize complex patterns in sign language images, signaling its potential for practical applications in sign language interpretation. The high accuracy achieved by the CNN model demonstrates its suitability for use in a variety of real-world scenarios, such as assistive technology for the deaf community or automation systems requiring hand gesture recognition. Thus, the trained CNN model has the potential to be a valuable tool in improving the accessibility and efficiency of communication for individuals who rely on sign language.
Prediksi Curah Hujan Menggunakan Jaringan Syaraf Tiruan Backpropagation pada Software Matlab Prasetya, Muhammad Erlangga; Ryansyah, Eddy; Rusfauzi Surya, Muhammad; Umaidah, Yuyun
Jurnal Informatika Dan Rekayasa Komputer(JAKAKOM) Vol 5 No 2 (2025): JAKAKOM Vol 5 No 2 SEPTEMBER 2025
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33998/jakakom.2025.5.2.2398

Abstract

This study aims to design and implement a rainfall prediction model using the Artificial Neural Network (ANN) approach with the backpropagation learning algorithm on the Matlab platform. Rainfall prediction is an important aspect in agriculture, hydrology, and water resources management, which requires accurate and adaptive methods to seasonal data patterns. In this study, monthly rainfall data for Bogor City for the period 2020-2022 was used as the training and testing dataset. The data was normalized using the sigmoid activation function to improve the network training performance. The network architecture consists of 12 input neurons, 10 hidden neurons, and 1 output neuron. The training results showed an error rate (Mean Squared Error) of 0.00090677 with a regression value of 0.99022, while the test results produced a regression of 0.98837. These findings indicate that the backpropagation method in ANN is able to predict rainfall effectively and accurately. This model can be further developed to predict other weather phenomena.