Natural fibers are increasingly used in various industries due to their eco-friendly properties and cost-effectiveness. However, current methods for testing the mechanical properties of these materials, such as tensile strength, often face limitations in accuracy and efficiency. This study aims to develop an innovative digital-based fiber tensile testing apparatus to enhance the precision of tensile testing. The research involves the design and construction of the apparatus, utilizing components such as ST37 steel, stepper motors, and Arduino technology. The apparatus was tested using two types of natural fibers, Cocos nucifera L. (coconut fiber) and Sansevieria, to assess their tensile properties. The results showed that although Sansevieria fibers have a smaller diameter, they exhibited higher tensile stress compared to coconut fibers. The developed digital testing apparatus enables more accurate and efficient fiber testing, contributing to the development of stronger and more sustainable materials for industrial applications. The findings of this study highlight the potential of advanced testing equipment in supporting the use of natural fibers in manufacturing and environmental sustainability.