Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Ilmu Komputer dan Teknologi (IKOMTI)

Analisis Implementasi Sistem Informasi Medis Pada Fasilitas Pelayanan Kesehatan Indonesia: Literature Review terhadap Kendala dan Solusi Implementasi Evana Anugrah Purwayanto; Dwita Urip Natasa; Deny Nugroho Triwibowo; Suryani, Riska
Jurnal IT UHB Vol 6 No 2 (2025): Jurnal Ilmu Komputer dan Teknologi
Publisher : Universitas Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35960/ikomti.v6i2.1776

Abstract

The adoption of digital medical record systems in Indonesia remains uneven, with approximately 60% of healthcare facilities still relying on manual processes. This study conducts a systematic literature review following PRISMA guidelines to analyze 11 peer-reviewed articles (2019-2024) on medical information system (MIS) implementation. Our analysis identifies three critical barriers: (1) infrastructure limitations (particularly in rural areas), (2) lack of trained human resources, and (3) unstable technology integration. Successful cases demonstrate that cloud-based solutions (e.g., Smart Medica Clinic) can reduce operational costs by 35%, while policy interventions like Ministry of Health Regulation No. 24/2022 strengthen legal frameworks for electronic health records. This study contributes to existing literature by focusing on Indonesia's unique socio-technical challenges and providing evidence-based recommendations for scalable digital health transformation.
Klasifikasi Bahasa Isyarat Menggunakan Metode Convolutional Neural Network dengan Arsitektur Mobilenet Ariefah Khairina; Deny Nugroho Triwibowo; Rosyid Ridlo Al Hakim
Jurnal IT UHB Vol 6 No 2 (2025): Jurnal Ilmu Komputer dan Teknologi
Publisher : Universitas Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35960/ikomti.v6i2.1792

Abstract

Deaf individuals are people with hearing impairments, classified as either completely deaf or hard of hearing, which hinders verbal communication. According to the World Health Organization (WHO), over 430 million people worldwide, including 34 million children, experience hearing loss. In Indonesia, the most commonly used communication method among the deaf community is the Indonesian Sign System (SIBI). With advancements in technology, artificial intelligence methods such as Convolutional Neural Networks (CNN) have been widely used for image processing and pattern recognition to support communication for the hearing impaired. However, previous studies have shown limitations in data quantity, class coverage, and a lack of evaluation involving lightweight architectures such as MobileNet, particularly for SIBI recognition. This research aims to develop a sign language classification model using CNN with the MobileNet architecture. The dataset used consists of 5,720 SIBI hand gesture images, including manually collected samples for the letters "J" and "Z." Preprocessing involved image resizing and data augmentation to prevent overfitting. The model was trained for 30 epochs. Evaluation results indicate that MobileNet achieved an accuracy of 74.15%, significantly outperforming the baseline CNN model, which only reached 19%. These results demonstrate that MobileNet is more efficient in recognizing visual patterns in sign language and offers a practical solution for implementation on resource-constrained devices. Nevertheless, further improvements are needed to enhance classification performance across all alphabet letters.
Perancangan Aplikasi Layanan Telemedicine Kampus (MENTALCARE) Ria Suci Nurhalizah; Suryani, Riska; Deny Nugroho Triwibowo
Jurnal IT UHB Vol 4 No 2 (2023): Jurnal Ilmu Komputer dan Teknologi
Publisher : Universitas Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35960/ikomti.v4i2.1263

Abstract

Banyak mahasiswa mengalami kesulitan dalam pembelajaran di kampus atau kegiatan yang lainnya yang menyebabkan stres berlebih. Oleh karena itu, dibutuhkan sebuah aplikasi yang dapat menjadi wadah untuk berkonsultasi masalah kesehatan bagi mahasiswa dan civitas akademik lainnya. Metode perancangan aplikasi ini menggunakan metode waterfall yang terdiri dari beberapa tahapan yaitu analisis, desain, implementasi, pengujian, dan pemeliharaan. Pada tahap desain dibuat diagram ERD dan DFD serta digunakan pengujian Black Box untuk pengujian perancangan aplikasi ini. Hasil perancangan aplikasi layanan Telemedicine Kampus (Mentalcare) terdapat beberapa fitur penting yaitu layanan konsultasi, jadwal konsultasi maupun jenis konsultasi yang dapat dipilih sesuai kebutuhan. Hal ini menjadi solusi yang efisien dalam menjembatani mahasiswa dan pengguna kampus, serta memberikan akses mudah dan praktis bagi mahasiswa untuk mendapatkan layanan konsultasi psikologis dengan psikolog yang sesuai dengan kebutuhan mereka.