Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING

PERBANDINGAN METODE LOW BIT CODINGDENGAN PHASE CODING PADA DIGITAL AUDIO WATERMARKING sembiring, zulfikar
JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Vol 1, No 1 (2017): Edisi Juli
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (562.997 KB) | DOI: 10.31289/jite.v1i1.569

Abstract

Penggunaan file audio sebagai media distribusi informasi digital sangat populer sekarang ini karena semakin canggihnya perangkat keras maupun perangkat lunak yang dapat mengolah file audio digital tersebut. Ditambah lagi dengan semakin mudahnya akses internet dimana saja baik melalui perangkat mobile ataupun tidak. Karena semakin banyaknya penggunaan file audio digital oleh perorangan atau perusahaan misalnya dalam produksi musik, atau video klip maka semakin sulit untuk menentukan keaslian suatu file audio digital dan sulitnya mencegah tingkat tindak pencurian atau pembajakan yang sangat merugikan pihak pememilik hak cipta. Ada beberapa metode dalam menentukan keaslian file audio digital dan mencegah tindak pembajakan terhadap media digital, yaitu digital watermarking. Pada jurnal ini akan dibahas dua buah metode watermarking yaitu metode low bit coding dan phase coding. Tujuannya ialah untuk mengetahui beberapa kelebihan dan kekurangan dalam penerapannya kedalam file audio digital. Karena ada beberapa aspek yang harus diketahui dalam menentukan baik atau tidaknya tingkat pengamanan pada file audio digital. Sehingga kita dapat menentukan metode yang mana yang pantas digunakan dalam menentukan keaslian file audio digital dalam mencegah tindak pencurian atau pembajakan.Kata kunci :audio, watermarking, low bit coding, phase coding
MOTION MONITORING SYSTEM BASED ON IOT Susilawati, Susilawati; Sembiring, Zulfikar; Muhathir, Muhathir
JITE (JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING) Vol 3, No 2 (2020): EDISI JANUARI
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (705.403 KB) | DOI: 10.31289/jite.v3i2.3326

Abstract

Every object is always moving, and movement of an object can occur at any time. The value of the motion which produced from an object can be very small to very large, and the impact of the movement can be at risk until very risky. For this reason, the movement of objects at risk must be observed whenever changes and observations for data retrieval can be done remotely. The purpose of this research to design an Internet of Things (IoT) devices that can observe and detect changes in the motion of an object.  The device is designed to be small, around 44 x 48 millimeters with very low power consumption. The design phase begins with recording motion data using the MPU6050 accelerometer sensor as a motion detector, arduino nano as a control device, WiFi ESP8266 as a communication medium for sending data from a receiver apllication motion data with UDP protocol. The test results show that this device is very sensitive to detect changes in the motion and angle of X, Y and Z of an object.
PERBANDINGAN METODE LOW BIT CODINGDENGAN PHASE CODING PADA DIGITAL AUDIO WATERMARKING zulfikar sembiring
JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Vol 1, No 1 (2017): Edisi Juli
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jite.v1i1.569

Abstract

Penggunaan file audio sebagai media distribusi informasi digital sangat populer sekarang ini karena semakin canggihnya perangkat keras maupun perangkat lunak yang dapat mengolah file audio digital tersebut. Ditambah lagi dengan semakin mudahnya akses internet dimana saja baik melalui perangkat mobile ataupun tidak. Karena semakin banyaknya penggunaan file audio digital oleh perorangan atau perusahaan misalnya dalam produksi musik, atau video klip maka semakin sulit untuk menentukan keaslian suatu file audio digital dan sulitnya mencegah tingkat tindak pencurian atau pembajakan yang sangat merugikan pihak pememilik hak cipta. Ada beberapa metode dalam menentukan keaslian file audio digital dan mencegah tindak pembajakan terhadap media digital, yaitu digital watermarking. Pada jurnal ini akan dibahas dua buah metode watermarking yaitu metode low bit coding dan phase coding. Tujuannya ialah untuk mengetahui beberapa kelebihan dan kekurangan dalam penerapannya kedalam file audio digital. Karena ada beberapa aspek yang harus diketahui dalam menentukan baik atau tidaknya tingkat pengamanan pada file audio digital. Sehingga kita dapat menentukan metode yang mana yang pantas digunakan dalam menentukan keaslian file audio digital dalam mencegah tindak pencurian atau pembajakan.Kata kunci :audio, watermarking, low bit coding, phase coding
Motion Monitoring System Based on IoT Susilawati Susilawati; Zulfikar Sembiring; Muhathir Muhathir
JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Vol 3, No 2 (2020): EDISI JANUARI
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jite.v3i2.3326

Abstract

Every object is always moving, and movement of an object can occur at any time. The value of the motion which produced from an object can be very small to very large, and the impact of the movement can be at risk until very risky. For this reason, the movement of objects at risk must be observed whenever changes and observations for data retrieval can be done remotely. The purpose of this research to design an Internet of Things (IoT) devices that can observe and detect changes in the motion of an object.  The device is designed to be small, around 44 x 48 millimeters with very low power consumption. The design phase begins with recording motion data using the MPU6050 accelerometer sensor as a motion detector, arduino nano as a control device, WiFi ESP8266 as a communication medium for sending data from a receiver apllication motion data with UDP protocol. The test results show that this device is very sensitive to detect changes in the motion and angle of X, Y and Z of an object.
Identification of Pneumonia using The K-Nearest Neighbors Method using HOG Fitur Feature Extraction Nurul Khairina; Theofil Tri Saputra Sibarani; Rizki Muliono; Zulfikar Sembiring; Muhathir Muhathir
JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Vol 5, No 2 (2022): Issues January 2022
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jite.v5i2.6216

Abstract

Pneumonia is a wet lung disease. Pneumonia is generally caused by viruses, bacteria or fungi. Not infrequently Pneumonia can cause death. The K-Nearest Neighbors method is a classification method that uses the majority value from the closest k value category. At this time people are not too worried about pneumonia because this pneumonia has symptoms like a normal cough. However, fast and accurate information from health experts is also very necessary so that pneumonia symptoms can be recognized early and how to deal with them can also be done faster. In this study, researchers will diagnose pneumonia to obtain information quickly about the symptoms of pneumonia. This information will adopt human knowledge into computers designed to solve the problem of identifying pneumonia. In this study, the K-Nearest Neighbors method will be combined with the HOG Extraction Feature to identify pneumonia more accurately. The KNN classification used is Fine KNN, Cosine KNN, and Cubic KNN. Where will be seen how the value of accuracy, precision, recall, and fi-score. The results showed that the classification could run well on the Fine KKN, Cosine KNN, and Cubic KNN methods. Fine KNN has an accuracy rate of 80.67, Cosine KNN has an accuracy rate of 84,93333, and Cubic KNN has an accuracy rate of 83,13333. Fine KNN has precision, recall and f1-score values of 0.794842, 0.923706, and 0.854442. Cosine KNN has precision, recall and f1-score values of 0.803048, 0.954039, and 0.872056. Cubic KNN has precision, recall and f1-score values of 0.73388, 0.964561, and 0.833555. From the test results, positive and negative identification of pneumonia was found to be more accurate with the Cosine KNN classification which reached 84,93333.