Claim Missing Document
Check
Articles

Found 7 Documents
Search

Penerapan Algoritma K-Medoids Dalam Menentukan Cluster Kabupaten/Kota Berdasarkan Migrasi Penduduk Jawa Barat Bahrul Ulum; Edi Tohidi; Nisa Dienwati Nuris
Jurnal Teknik Informatika dan Teknologi Informasi Vol. 4 No. 1 (2024): April: Jurnal Teknik Informatika dan Teknologi Informasi
Publisher : Pusat Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/jutiti.v4i1.3581

Abstract

One of the three main factors influencing population dynamics is migration, along with births and deaths. Changes in population structure will definitely be influenced by migration. If in-migration is more than out-migration, the population will increase, but if out-migration is less than in-migration, the population will decrease. Therefore, it is necessary to know the grouping of regions based on population migration levels. To carry out this grouping, it is necessary to use Data mining methods. In this research, the Data mining used is Clustering using the K-Medoids algorithm. This method divides each district into predetermined groups. The K-Medoids method was chosen because it uses physical data that is not abstract and clear, which is suitable for the problem of grouping population migration data. By grouping migration levels based on districts/cities in West Java, it will be known which districts/cities in West Java have high levels of incoming migration, medium migration and high outmigration. Then recommendations can be given to the local government according to the migration level category.
PENERAPAN APLIKASI ABSENSI FACE RECOGNITION DENGAN OPENCV MENGGUNAKAN ALGORITMA HAARCASCADE CLASSIFIER DI SMK MUTHIA HARAPAN CICALENGKA Edi Tohidi; Rizki Fahrezi Maulana; Edi Wahyudin; Kaslani
Scientica: Jurnal Ilmiah Sains dan Teknologi Vol. 2 No. 4 (2024): Scientica: Jurnal Ilmiah Sains dan Teknologi
Publisher : Komunitas Menulis dan Meneliti (Kolibi)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pencatatan kehadiran siswa merupakan aspek krusial dalam pengelolaan sekolah. Saat ini, di SMK Muthia Harapan Cicalengka, penanganan data absensi siswa masih dilakukan secara manual, menghabiskan waktu dan tenaga yang signifikan. Untuk menangani permasalahan ini, telah dikembangkan aplikasi bernama "SmartSchool Data Manager" yang memanfaatkan teknologi pengenalan wajah dengan menggunakan OpenCV dan algoritma HaarCascade Classifier. Aplikasi ini dirancang untuk secara otomatis melacak kehadiran siswa dengan mendeteksi wajah mereka menggunakan algoritma HaarCascade Classifier, yang menggunakan karakteristik wajah untuk identifikasi. Setelah diuji coba di SMK Muthia Harapan Cicalengka, aplikasi ini berhasil dengan akurasi mencapai 83.2%. Ini membuktikan kemampuan aplikasi dalam memantau kehadiran siswa secara efisien dan tepat. Selain meningkatkan akurasi pencatatan kehadiran siswa, aplikasi ini juga dapat membantu menghemat waktu dan usaha yang sebelumnya diperlukan oleh guru-guru dalam pencatatan manual kehadiran siswa. Dengan menggunakan aplikasi ini, prWoses pencatatan kehadiran siswa menjadi lebih mudah karena guru hanya perlu melakukan pemindaian wajah siswa untuk mencatat kehadiran mereka
Sentiment analysis to classify TikTok Shop Users on Twitter with Naïve Bayes Classifier Algorithm Lestari, Ayu; Ade Irma Purnamasari; Agus Bahtiar; Edi Tohidi
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.748

Abstract

Advances in information technology have facilitated the use of social media as an e-commerce platform, with TikTok Shop enabling in-person transactions. This research addresses the gap in understanding user perceptions of TikTok Shop through sentiment analysis on Twitter. Sentiment classification is performed using the Naïve Bayes Classifier algorithm. The dataset consists of 1,907 Indonesian tweets, collected from January 2023 to July 2024, and processed using RapidMiner in the Knowledge Discovery in Database (KDD) framework. The preprocessing stages include data cleaning, normalization, tokenization, stopword removal, and stemming. To overcome data imbalance, Synthetic Minority Oversampling Technique (SMOTE) was applied. The model achieved 93.98% accuracy, with balanced precision and recall for positive, neutral, and negative sentiments. The sentiment distribution among TikTok Shop users on Twitter was 35.5% positive, 35.5% negative, and 29.0% neutral. This research provides insights into consumer behavior on social media and emphasizes the importance of sentiment analysis to increase user engagement and understand market perception. This research is expected to provide information to platform developers and businesses looking to improve TikTok
K-Means Algorithm for Grouping Models of Dengue Fever Prone Areas in Cirebon City Aida Safitri; Ade Irma Purnamasari; Agus Bahtiar; Edi Tohidi
Journal of Artificial Intelligence and Engineering Applications (JAIEA) Vol. 4 No. 2 (2025): February 2025
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59934/jaiea.v4i2.834

Abstract

Dengue hemorrhagic fever (DHF) is an infectious disease transmitted through the Aedes aegypti mosquito. DHF cases in Cirebon City show a significant increase every year. This study aims to classify dengue prone areas based on case data per health center in 2020-2024 obtained from the Cirebon City Health Office. The method used is the K-Means algorithm with the Knowledge Discovery in Database (KDD) approach, which includes data selection, preprocessing, data transformation, data mining, evaluation, and knowledge. Evaluation using Davies-Bouldin Index (DBI) showed optimal results at k = 6 with a DBI value of -0.445. The clustering results produced six clusters: cluster 5 (437 dengue cases in 34 health centers) showed high risk; cluster 0 (244 cases), cluster 2 (129 cases), and cluster 3 (279 cases) showed medium risk; while cluster 1 (69 cases) and cluster 4 (86 cases) showed low risk. This study shows that the K-Means algorithm is effective in identifying DHF risk distribution patterns and provides a strategic basis for the Cirebon City Health Office to prioritize interventions and develop more effective prevention strategies.
PENINGKATAN MODEL KLASIFIKASI SENTIMEN PENGGUNA APLIKASI TOMORO COFFEE MENGGUNAKAN ALGORITMA NAÏVE BAYES Dina Audina; Ade Irma Purnamasari; Agus Bahtiar; Edi Tohidi
Jurnal Informatika dan Rekayasa Elektronik Vol. 8 No. 1 (2025): JIRE APRIL 2025
Publisher : LPPM STMIK Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kemajuan teknologi informasi telah merevolusi cara bisnis berinteraksi dengan pelanggan melalui aplikasi mobile, termasuk dalam sektor makanan dan minuman. Aplikasi Tomoro Coffee menghadapi tantangan dalam mempertahankan kepuasan pengguna akibat keterbatasan fitur dan masalah teknis. Penelitian ini bertujuan untuk menerapkan algoritma Naïve Bayes guna meningkatkan model klasifikasi sentimen ulasan pengguna, menganalisis distribusi sentimen positif dan negatif beserta faktor utama yang memengaruhinya, serta mengevaluasi performa model berdasarkan akurasi, presisi, recall, dan F1-score. Data ulasan dikumpulkan dari Google Play Store dan diolah menggunakan metode Knowledge Discovery in Database (KDD), yang mencakup pembersihan data, tokenisasi, penghapusan stopword, stemming, serta ekstraksi fitur menggunakan Term Frequency-Inverse Document Frequency (TF-IDF). Hasil penelitian menunjukkan bahwa algoritma Naïve Bayes mencapai akurasi sebesar 90%, dengan presisi 91,3%, recall 87,3%, dan F1-score 88,7%. Temuan ini memberikan wawasan strategis bagi pengembang aplikasi dalam meningkatkan layanan dan fitur berdasarkan analisis sentimen pengguna. Dari hasil analisis, 64,4% ulasan tergolong positif, didominasi oleh komentar seperti "kopinya enak", sementara 35,6% ulasan negatif umumnya berisi keluhan teknis, seperti "tidak tersedia".
Peningkatan Layanan RT Melalui Sistem Informasi Administrasi Berbasis Web Dodi Solihudin; Edi Tohidi; Abi Fajar Ahmad Fauzi; Ade Valentino
AMMA : Jurnal Pengabdian Masyarakat Vol. 1 No. 03 (2022): AMMA : Jurnal Pengabdian Masyarakat
Publisher : CV. Multi Kreasi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Administrative services at the neighborhood level (Rukun Tetangga/RT) are an essential component in supporting good governance within communities. However, in practice, these services are still frequently managed manually, leading to various issues such as service delays, data entry errors, and inefficiencies in documentation. This Community Service Program (PKM) aims to design and implement a web-based neighborhood administrative information system to assist RT administrators in delivering faster, more accurate, and transparent services to residents. The implementation methods include needs assessment, system design, software development, as well as training and technical assistance for both administrators and residents. The system is developed using web-based technologies (PHP, MySQL, and HTML/CSS), allowing access via computers or smartphones. Key features of the system include resident data management, automated issuance and printing of official letters, archive management, and financial and activity reporting. The implementation results indicate a significant improvement in the efficiency of RT administrative services. RT administrators are no longer burdened with manual record-keeping, and residents can access services independently from their homes. Moreover, the system supports administrative transparency, as all activities are digitally recorded and easily traceable. This program has a positive impact on digital literacy among residents and strengthens the integration of information technology with public services at the micro community level. In the future, the system is expected to be replicated in other RTs as a community-based digital transformation solution.
Peningkatan Literasi Keuangan Keluarga melalui Pelatihan Digital Pasca Pandemi Edi Tohidi; Edi Wahyudin; Adhivia Julian; Aditya Fauzi Samsuri
AMMA : Jurnal Pengabdian Masyarakat Vol. 1 No. 03 (2022): AMMA : Jurnal Pengabdian Masyarakat
Publisher : CV. Multi Kreasi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The COVID-19 pandemic has had a significant impact on household economic stability in Indonesia. Many families have experienced a decrease in income, changes in consumption patterns, and limited access to formal financial services. In the post-pandemic period, the economic challenges faced by households have become increasingly complex, thus requiring enhanced literacy and skills in financial management, particularly those based on digital tools. This Community Service Program (PKM) aims to provide training in digital-based household financial management to communities in the partner area, in order to improve their ability to manage income, expenses, savings, and the wise use of digital financial applications. The implementation method includes an initial survey to assess participants' financial literacy levels, preparation of training modules, face to-face and online training sessions, as well as evaluation of participants’ improvement in knowledge and skills. The training materials cover topics such as household financial planning, debt and savings management, the use of digital wallets, financial recording applications, and basic understanding of micro-investments. The results of the program indicate that the training successfully increased participants’ understanding of basic financial concepts and improved their ability to use digital financial tracking applications. Participants also became more skilled in preparing family budgets, monitoring daily expenses, and identifying priority needs. Other positive outcomes include heightened awareness of the importance of saving and managing financial risk. This activity provides tangible contributions to fostering economic self-reliance among families in the digital era. Going forward, similar training programs are expected to be developed as sustainable initiatives, particularly for lower-middle income communities that are more vulnerable to economic shocks.