Kristanty, Diyah
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Prothrombin Time (PT), Activated Partial Thromboplastin Time (APTT), Fibrinogen, and D-dimer in Coronavirus Disease 2019 Outcome Atmaja, Fredy Wirya; Adiyanti, Sri Suryo; Kristanty, Diyah; Dwira, Surya; Kusmardi, Kusmardi
Indonesian Journal of Medical Chemistry and Bioinformatics
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

COVID-19, caused by SARS-CoV-2 has been reported to be associated with coagulopathy and DIC. This study aimed to investigate the profiles and differences of PT, APTT, fibrinogen, and D-dimer in COVID- 19 outcome. This retrospective cohort was conducted at Central Laboratory Clinical Pathology Department of dr. Cipto Mangunkusumo Hospital from July – December 2020. Demographic, clinical, and laboratory data were extracted from EHR and compared between poor and good outcome. Ninety-seven subjects were confirmed positive COVID-19, 45 of whom (46.4%) were in poor outcome group, while 52 subjects (53.6%) were in good outcome group. Median of PT 11.0” (9.7-28.3), APTT 38.4” (23.9-121), fibrinogen 484.8 mg/dL (51.2-940.9), and D-dimer 1,800 µg/L (190-35,200). Longer PT, APTT, and higher D-dimer (p < 0.05), while lower fibrinogen (p > 0.05) was found in poor outcome group. There were significant differences of PT, APTT and D-dimer in COVID-19 outcome.
Phytochemical Profile and Cervical Anticancer Activity of an In Vitro n-Hexane Extract of Kunto Dewo Fruit (Kigelia pinnata) Peel and Flesh Isbandiputri, Swarnasari Nurandita; Dwira, Surya; kristanty, diyah
Indonesian Journal of Medical Chemistry and Bioinformatics
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Cervical cancer is the fourth highest cancer occurring and causes death in women. Therefore, adequate management is needed to prevent its development. Currently, the treatment has a variety of adverse side effects, so it needs alternative treatments that are supportive and with minimal side effects. One way is to use herbal plants, such as the Kunto Dewo (Kigelia pinnata) plant which is often used as traditional medicine. This plant has antimicrobial and cytotoxic effects on cancer cells. Knowing the phytochemical profile and in-vitro anticancer activity of the n-hexane extract of peel and flesh of Kunto Dewo (Kigelia pinnata) fruit against cervical cancer HeLa cells. The peel and flesh of Kigelia pinnata fruit are macerated in n-hexane solvent then the resulting filtrate is evaporated to become an extract. The extract is used for phytochemical profile, carry out through phytochemical screening, thin layer chromatography, calculation of total phenol, and total flavonoids. The extract was also tested for cytotoxic activity against cervical cancer HeLa cells using MTT assay. The n-hexane extract of the peel and flesh of the kigelia pinnta fruit contains triterpenoids. In TLC analysis, there were found 4 components in the n-hexane extract of Kigelia pinnata fruit peel and 8 components in the n-hexane extract of Kigelia pinnata fruit flesh. The cytotoxic activity of the n-hexane extract of the peel and flesh of Kigelia pinnata fruit is included in the moderately active category. The n-hexane extract of the peel and flesh of the kigelia pinnata fruit has potential as an anti-cervical cancer.
In Silico Analysis of CD40 Mutations and Their Implications for Quinoline-benzoic acid derivatives Based Therapy in Graves' Disease Yunaini, Luluk; Kristanty, Diyah; Sari, Puji; Dwira, Surya; Suryandari, Dwi Anita; Bustami, Arleni
Indonesian Journal of Medical Chemistry and Bioinformatics
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Graves' disease is an autoimmune disorder in which the CD40-CD154 interaction plays a critical role in T-cell activation. In this study, in silico methods were employed to analyze the binding interactions of quinoline-benzoic acid derivatives (NSB, FSB, and NQB) with the CD40 receptor and to investigate the implications of specific CD40 mutations for drug efficacy. In this reseach conducted by molecular simulation approach with molecular docking Results Mutation analysis of CD40 identified alterations in key residues, such as R203C, which may impact ligand-independent activation and downstream TRAF binding, crucial for signal transduction. These findings highlight the therapeutic potential of quinoline-benzoic acid derivatives for targeting CD40 in Graves' disease, particularly in the context of receptor mutations. The integration of molecular docking, mutation analysis, and pharmacokinetic profiling provides a comprehensive framework for designing effective CD40-targeted therapies.
Exploring Differentially Expressed Genes to Identify Biomarkers of Cervical Cancer: A Bioinformatics Approach Suryandari, Dwi Anita; Yunaini, Luluk; Kristanty, Diyah; Prawiningrum, Aisyah
Indonesian Journal of Medical Chemistry and Bioinformatics
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study explores the molecular landscape of cervical cancer through the identification and analysis of differentially expressed genes (DEGs) from the GSE63514 dataset. A high-confidence protein–protein interaction (PPI) network was constructed using the STRING database (v11.5) and visualized via Cytoscape, identifying 178 nodes and 1,052 edges. Using the CytoHubba plugin, the top 10 hub genes—TOP2A, MKI67, CDK1, BUB1, CCNB1, CCNA2, AURKA, CDC20, PLK1, and RFC4—were highlighted based on degree centrality. These genes are predominantly associated with cell cycle regulation, DNA replication, and mitotic division, and are potentially valuable as biomarkers or therapeutic targets for cervical cancer. Functional enrichment using DAVID and Enrichr tools revealed significant involvement of DEGs in ATP binding, spindle microtubule formation, and protein kinase activity, particularly within the chromosome centromeric region and nucleoplasm. KEGG pathway analysis identified key associations with the cell cycle, DNA replication, p53 signaling, and complement and coagulation cascades. Further heatmap analysis of treatment responders versus non-responders demonstrated distinct gene expression profiles, particularly of immune-related genes like C1QA, C3, and SERPING1, and proliferative markers such as TOP2A and MKI67. These findings underscore the dual role of immune and proliferative pathways in cervical cancer progression and suggest their utility in developing predictive biomarkers and personalized treatment strategies.