Claim Missing Document
Check
Articles

Found 10 Documents
Search

Mapping of Landslide Prone Areas in Huamual Sub-District, Seram Bangian Barat Regency, Indonesia Latue, Theochrasia; Latue, Philia; Rakuasa, Heinrich; Somae, Glendy; Muin, Abdul
Jurnal Riset Multidisiplin dan Inovasi Teknologi Том 1 № 02 (2023): Jurnal Riset Multidisiplin dan Inovasi Teknologi
Publisher : PT. Riset Press International

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59653/jimat.v1i02.239

Abstract

This research aims to map landslide-prone areas in Huamual Sub-district, West Seram Regency, Indonesia. Through the collection and analysis of geospatial data, including characteristics of slope, land elevation, geology, rainfall, land cover and distance from active faults, this study successfully identified areas with high potential landslide risk. The results showed that the area in low landslide class has an area of 5,076.67 ha, the area in medium class has an area of 20,979.79 ha and the area in high landslide prone class has an area of 7,430.88 ha. The results of this study provide an important contribution in landslide risk mitigation planning, through identification of zones that need special attention, safer spatial planning, and more effective early warning system. This research provides a strong scientific basis for the government and other stakeholders to take appropriate preventive measures, so as to improve public safety and protect important assets from potential landslide hazards in Huamual Sub-district area.
Modeling Flood Hazards in Ambon City Watersheds: Case Studies of Wai Batu Gantung Rakuasa, Heinrich; Joshua, Benson; Somae, Glendy
Journal of Information Systems and Technology Research Vol. 3 No. 2 (2024): May 2024
Publisher : Ali Institute or Research and Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55537/jistr.v3i2.836

Abstract

Flood hazard modeling in watersheds is an important step in natural disaster risk mitigation, especially in vulnerable areas such as Ambon City. This research focused on the Wai Batu Gantung, Wai Batu Gajah, Wai Tomu, Wai Batu Merah, and Wai Ruhu watersheds, using JRC Global Surface Water Mapping Layers data, NASA SRTM Digital Elevation 30 m data, and USGS Landsat 8 Level 2, Collection 2, Tier 1 data analyzed on the Google Earth Engine (GEE) platform. Prediction of built-up land in flood-prone areas was conducted by utilizing flood history analysis, hydrological modeling, and flood zone mapping. The results show that flood hazard modeling provides a better understanding of flood risk, assists in the development of safer land use planning, and increases public awareness of flood risk in Ambon City. It is hoped that the results of this research can contribute to flood risk management and sustainable regional development in the future.
Prediction of Land Cover Change in Wae Heru Watershed Ambon City Using Celular Automata Markov Chain Manakane, Susan E; Latue, Philia Christi; Somae, Glendy; Rakuasa, Heinrich
Journal of Geographical Sciences and Education Vol 1 No 1 (2023): Journal of Geographical Sciences and Education
Publisher : PT. Pubsains Nur Cendekia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69606/geography.v1i1.52

Abstract

Land cover change in the watershed area in Ambon City has an impact on land degradation, water pollution, flooding and erosion. Therefore, the utilization and efficiency of land cover in the watershed area must be improved based on sustainable land cover planning.  This study aims to analyze land cover changes in the Wae Heru watershed, Ambon City in 2013, 2018, and 2023 and predict land cover in 2028.  This study used the CA-Markov method to predict land cover in 2028. The results showed that in 2013 the built-up land had an area of 74.25 ha, in 2018 an area of 79.30 ha and in 2023 an area of 88.00 ha and the results of the 2028 prediction of built-up land were 116.96 ha, this is certainly influenced by the increasing number of residents who continue to grow every year. Agricultural land, non-agricultural land and open land continue to decrease in area. The results of this prediction are very useful for the government in making policies related to sustainable spatial planning in the future.
The Role of Geography Research in Supporting Sustainable Development in Ambon City, Indonesia: A Review Manakane, Susan E; Latue, Philia Christi; Somae, Glendy; Rakuasa, Heinrich
Sinergi International Journal of Economics Vol. 1 No. 2 (2023): August 2023
Publisher : Yayasan Sinergi Kawula Muda

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61194/economics.v1i2.67

Abstract

This study discusses the significant role of geographic research in supporting sustainable development efforts in Ambon City, Indonesia. Through the analysis of urban growth patterns, natural resource management, spatial planning, and identification of environmental and social impacts, geographic research provides insights that guide urban planners and decision-makers. This research. This research uses a descriptive qualitative approach. The type of research used is a literature study which is research that has been done before by collecting books, journals, magazines, and scientific papers that are related to how the utilization of geography research in the fields of disaster, regional and urban planning, health, tourism, agriculture and forestry and climate change is applied to realize an environmentally sound and sustainable Ambon City. The results show that Geography research plays an important role in supporting sustainable development in Ambon City, Indonesia, revealing that geography research is not just an analytical tool, but also a valuable guide for policy makers, urban planners, and communities in designing and implementing sustainable development. Through collaboration and application of research findings, Ambon City can grow into a city that not only develops economically, but also preserves the environment and the welfare of its people.
Pemodelan Daerah Rawan Banjir di Kecamatan Sirimau Menggunakan Metode Multi-Criteria Analysis (MCA) Latue, Philia, Christi; Imanuel Septory, Juan Steiven; Somae, Glendy; Rakuasa, Heinrich
Jurnal Perencanaan Wilayah dan Kota Vol. 18 No. 1 (2023)
Publisher : Program Studi Perencanaan Wilayah dan Kota, UPT Publikasi Publikasi Ilmiah UNISBA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/jpwk.v18i1.1964

Abstract

Kecamatan Sirimau merupakan salah satu kecamatan di Kota Ambon yang sering terjadi banjir. Salah satu upaya awal untuk mitigasi bencana banjir yaitu dengan memetakan daerah rawan banjir di Kecamatan Sirimau. Penelitian ini bertujuan untuk memodelkan daerah rawan banjir Di Kecamatan Sirimau menggunakan metode Multi-Criteria Analysis (MCA). Variabel-variabel penyebab banjir yang digunakan yaitu kemiringan lereng, ketinggian, penggunaan lahan, buffer sungai, jenis tanah dan curah hujan yang kemudian dilakukan overlay menggunakan metode Multi-Criteria Analysis (MCA). Bahaya banjir di Kecamatan Sirimau dibagi menjadi tiga kelas yaitu kelas tinggi yang memiliki luas 540,09 ha atau 14,59%, kelas sedang seluas 1.607,14 ha atau 43,41% dan kelas rendah seluas 1.555,34 ha atau sebesar 42,01%. Daerah permukiman yang terdampak banjir di Kecamatan Seirmau berada pada kelas sedang seluas 660,16 ha (58,20 %) dan kelas tinggi yaitu seluas 474,21 ha atau sebesar 41,80 %. Desa yang memiliki presentasi luasan bahaya banjir terbesar pada setiap kelas bahaya banjir yaitu Desa Batu Merah. Hasil penelitian ini diharapkan dapat membantu pemerintah dan masyarakat setempat untuk metigasi bencana banjir kedepannya.
PEMODELAN SPASIAL PERUBAHAN TUTUPAN LAHAN DAN PREDIKSI TUTUPAN LAHAN KECAMATAN TELUK AMBON BAGUALA MENGGUNAKAN CA-MARKOV Somae, Glendy; Supriatna, S; Rakuasa, Heinrich; Lubis, Aufar Raynanda
J SIG (Jurnal Sains Informasi Geografi) Vol 6, No 1 (2023): Edisi Mei
Publisher : Universitas Muhammadiyah Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31314/jsig.v6i1.1832

Abstract

Teluk Ambon Baguala District, is one of the sub-districts in Ambon City which has experienced a significant increase in population. Along with the increasing population, the need for residential, infrastructure and industrial land is increasing. This will certainly have an impact on the conversion of other cover to uncontrolled built-up land, environmental damage and natural disasters. This study aims to analyze land cover changes in Teluk Ambon Baguala District in 2014, 2018, 2022 and predict land cover models in 2026, 2030 and 2034. The driving factors used are slope, land height and distance from the road. This study uses the CA-Markov method to predict future land cover. The results of the analysis of changes and predictions of land cover in 2014, 2018, 2022, 2026, 2030 and 2034 show that built-up land continues to increase in area along with increasing population and the high demand for built-up land which is increasing.
Sistim Informasi Geografis Sebaran Objek Wisata Bahari di Kecamatan Salahutu, Pulau Ambon Berbasis Web Dengan Menggunakan ArcGIS StoryMaps Rakuasa, Heinrich; Somae, Glendy; Sihasale, Daniel Anthoni; Pakniany, Yamres; Septory, Juan Steiven Imanuel; Latue, Philia Christi
EL-JUGHRAFIYAH Vol 3, No 2 (2023): El-Jughrafiyah : August, 2023
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/jej.v3i2.25224

Abstract

Penelitian ini memperkenalkan penggunaan Sistem Informasi Geografis (SIG) dalam merancang platform web berbasis ArcGIS StoryMaps untuk memvisualisasikan dan mempromosikan objek wisata bahari di Kecamatan Salahutu, Pulau Ambon. Platform ini mengintegrasikan data geografis dengan elemen multimedia seperti gambar, video, dan teks naratif untuk menghasilkan pengalaman interaktif yang memadukan informasi tentang objek wisata, jalur perjalanan, serta budaya lokal. Melalui peta interaktif, pengunjung dapat menjelajahi lokasi objek wisata, mendapatkan informasi detail, dan memahami konteks lingkungan sekitarnya. Diharapkan platform ini akan memungkinkan promosi yang efektif terhadap keindahan dan daya tarik objek wisata bahari di Kecamatan Salahutu kepada berbagai jenis audiens, serta mendorong kesadaran akan pentingnya pelestarian lingkungan bahari.
Analisis Spasial Daerah Rawan Longsor di Kecamatan Damer, Kabupaten Maluku Barat Daya, Provinsi Maluku Rakuasa, Heinrich -; Somae, Glendy; Sihasale, Daniel Anthoni; Pakniany, Yamres; Septory, Juan Steiven Imanuel; Latue, Philia Christi
EL-JUGHRAFIYAH Vol 3, No 1 (2023): El-Jughrafiyah : February, 2023
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/jej.v3i1.20278

Abstract

Berdasarkan data historis kejadian longsor, Kecamatan Damer merupakan daerah yang rawan longsor di Kabupaten Maluku Barat Daya. Salah satu langkah awal dalam mitigasi bencana longsor di Kecamatan Damer adalah dengan memetakan daerah-daerah yang berpotensi longsor. Tujuan dari penelitian ini adalah untuk mengetahui sebaran spasial daerah rawan longsor di Kecamatan Damer, Kabupaten Maluku Barat Daya. Penelitian ini menggunakan metode SMORPH untuk mengidentifikasi dan mengklasifikasikan daerah yang berpotensi longsor berdasarkan matriks antara bentuk lereng dan sudut kemiringan lereng. Kajian ini menghasilkan 4 tingkatan daerah yang berpotensi longsor, yaitu potensi sangat rendah, rendah, sedang, dan tinggi. Desa dengan potensi longsor tinggi adalah Desa Wulur dan desa dengan potensi longsor sangat rendah adalah Desa Ilih. Hasil penelitian ini juga menggambarkan bahwa semakin tinggi lereng yang disertai dengan terbentuknya lereng cembung atau cekung maka potensi terjadinya longsor semakin tinggi. Hasil penelitian diharapkan dapat membantu pemerintah Kabupaten Maluku Barat Daya khususnya pemerintah Kecamatan Damer dalam upaya penataan ruang berbasis mitigasi bencana
Integration of Remote Sensing Data and Geographic Information System for Mapping Landslide Risk Areas in Ambon City, Indonesia Hehanussa, Fekry Salim; Latue, Philia Christi; Rakuasa, Heinrich; Somae, Glendy
Journal of Selvicoltura Asean Vol. 1 No. 3 (2024)
Publisher : Yayasan Adra Karima Hubbi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70177/jsa.v1i3.1185

Abstract

This research investigates the integration of remote sensing data and Geographic Information Systems (GIS) to map landslide risk areas in Ambon City, Indonesia, a region characterized by its hilly terrain and susceptibility to landslides. Utilizing various environmental variables such as slope gradient, land use, and rainfall patterns, the study employs a multi-criteria approach to assess landslide vulnerability and distribution. The findings reveal significant correlations between anthropogenic factors, such as urbanization, and increased landslide risk, highlighting the urgent need for sustainable urban planning and disaster risk management strategies. By providing a comprehensive landslide risk map, this study aims to support local authorities in making informed decisions to enhance community resilience and mitigate the impacts of landslides in Ambon City.
Utilization of Artificial Intelligence for Spatial Decision Support System Somae, Glendy; Rakuasa, Heinrich
Journal of Loomingulisus ja Innovatsioon Vol. 1 No. 2 (2024)
Publisher : Yayasan Adra Karima Hubbi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70177/innovatsioon.v1i2.1260

Abstract

The integration of Artificial Intelligence (AI) into Spatial Decision Support Systems (SDM) is a transformative advancement in improving decision-making processes in various fields, including urban planning, environmental management, and disaster response. This research uses a literature review methodology to systematically collect, analyze, and synthesize existing scientific articles, conference papers, and relevant reports related to AI applications in SDSS. The findings of this study reveal that AI technologies, such as machine learning and natural language processing, significantly enhance data processing capabilities, enabling the analysis of complex spatial data and the identification of hidden patterns that may be missed by traditional methods. Despite the great benefits, challenges related to data quality, ethical considerations, and the need for capacity building among stakeholders are critical to the successful implementation of AI in SDSS. It can be concluded that while AI has the potential to revolutionize spatial decision-making, ongoing research is essential to develop best practices, address ethical implications, and foster collaboration among various stakeholders to create a more sustainable and resilient society.