This study addresses the challenge faced by the Sukabumi Creative Hub Instagram team in identifying the most engaging content by proposing a web-based Decision Support System (DSS) utilizing the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. Instagram, as a dominant social media platform in Indonesia, serves as a vital tool for promoting local creative industries, yet current content evaluation lacks systematic analysis. The system developed ranks 62 content items based on three engagement metrics—likes, views, and shares—weighted at 5, 3, and 1 respectively. Data were processed using Microsoft Excel and visualized through an Input-Process-Output (IPO) model. The results show that “Rekap Merangkum Sukabumi” achieved the highest relative closeness (RC = 0.8793), demonstrating TOPSIS’s effectiveness in ranking content based on proximity to ideal engagement levels. Compared to previous studies that applied TOPSIS in different contexts, this research offers a novel contribution by applying it to localized social media content, filling a gap in digital content analytics literature. Despite limitations such as subjective weighting, platform specificity, and manual calculations, the system offers a replicable, structured approach to content evaluation, with implications for improved social media strategy and future research in automated, cross-platform DSS applications. Ultimately, this study bridges practical needs in creative content management with theoretical development in decision support systems for digital engagement analysis.