Claim Missing Document
Check
Articles

Found 3 Documents
Search

A Machine-Learning-Based Approach for Tourist-Arrival Trend Prediction Putra, I Putu Edy Suardiyana; Lestari, Denok; Tunjungsari, Komang Ratih
Journal of Business on Hospitality and Tourism Vol 9, No 2 (2023): December, 2023
Publisher : Institut Pariwisata dan Bisnis Internasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22334/jbhost.v9i2.480

Abstract

This study proposes a machine-learning-based technique to predict trend in tourist arrivals based on online news headlines and the number of previous tourist arrivals. Tourist arrivals prediction is important to give information to destinations’ local governments and businesses to prepare their services. We use Logistic Regression and Support Vector Machine to create a model to predict the increase in tourist arrivals monthly. News headlines from three online Indonesian news portals are used. A total of 47,298 online news headlines were collected. The results show that Logistic Regression can achieve up to 67.4% of F-score while Support Vector Machine can achieve up to 62.9% of F-score. These results show that adding online news headlines and machine-learning algorithms can give significantly better results in predicting tourist arrivals.
A Machine-Learning-Based Approach for Tourist-Arrival Trend Prediction Putra, I Putu Edy Suardiyana; Lestari, Denok; Tunjungsari, Komang Ratih
Journal of Business on Hospitality and Tourism Vol. 9 No. 2 (2023): December, 2023
Publisher : Institut Pariwisata dan Bisnis Internasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22334/jbhost.v9i2.480

Abstract

This study proposes a machine-learning-based technique to predict trend in tourist arrivals based on online news headlines and the number of previous tourist arrivals. Tourist arrivals prediction is important to give information to destinations’ local governments and businesses to prepare their services. We use Logistic Regression and Support Vector Machine to create a model to predict the increase in tourist arrivals monthly. News headlines from three online Indonesian news portals are used. A total of 47,298 online news headlines were collected. The results show that Logistic Regression can achieve up to 67.4% of F-score while Support Vector Machine can achieve up to 62.9% of F-score. These results show that adding online news headlines and machine-learning algorithms can give significantly better results in predicting tourist arrivals.
PEMBERDAYAAN MASYARAKAT DALAM PERENCANAAN KAWASAN DESA WISATA BONGKASA PERTIWI Lestari, Denok; Ekasani, Kadek Ayu; Putra, I Putu Edy Suardiyana; Ananda, I Made Aryanta; Wiadnyana, I Gusti Agung Gede
E-Amal: Jurnal Pengabdian Kepada Masyarakat Vol 4 No 3: September-Desember 2024
Publisher : LP2M STP Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47492/eamal.v4i3.3603

Abstract

Kegiatan pengabdian kepada masyarakat ini dilaksanakan di desa Bongkasa Pertiwi, yang terletak di kecamatan Abiansemal kabupaten Badung, Bali. Desa ini telah ditetapkan sebagai desa wisata sejak tahun 2010 dan dikenal berkat potensi alamnya yang indah dan unik. Namun demikian, minimnya pemahaman dalam perencanaan dan pengelolaan pariwisata telah menghambat langkah desa Bongkasa Pertiwi menjadi desa wisata maju. Kegiatan pengabdian ini bertujuan untuk memberikan pemahaman dan penguatan kepada masyarakat mengenai pentingnya perencanaan tata ruang dan tata kelola dalam pengembangan pariwisata. Kegiatan diawali dengan penyamaan persepsi tentang Rencana Detail Tata Ruang (RDTR) wilayah desa Bongkasa Pertiwi, yang dilanjutkan dengan pemaparan arah kebijakan pembangunan daerah,, dan strategi penyusunan peta sosial desa. Kegiatan dilanjutkan dengan diskusi kelompok untuk menentukan program prioritas pengembangan desa tahun 2025. Rangkaian kegiatan pengabdian ini terlaksana berkat sinergi masyarakat dan pemerintah kabupaten Badung, dan telah memberikan manfaat berupa peningkatan kapasitas masyarakat, serta menghasilkan kesepakatan sebagai dasar penetapan kebijakan pengembangan desa wisata.