Claim Missing Document
Check
Articles

Found 3 Documents
Search

Sistem Deteksi Durasi Waktu Penyimpanan Susu Sapi Segar Berdasarkan Tingkat Keasaman dan Perubahan Warna dengan Menggunakan Metode K-Nearest Neighbors (K-NN) Berbasis Arduino BHRAMANTYA , RIZKY; Syauqy , Dahnial; Setiawan , Eko
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 8 No 10 (2024): Oktober 2024
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Susu merupakan sumber pangan hewani yang penting, mengandung nutrisi seperti air, lemak, laktosa, protein, dan mineral. Susu sapi segar berasal dari kelenjar susu sapi perah Friesian Holstein (FH) betina dan biasanya mengalami proses pengolahan, termasuk pasteurisasi atau UHT, untuk menghilangkan bakteri patogen sambil mempertahankan kualitas nutrisinya. Kualitas susu sapi dapat dinilai berdasarkan pH, warna, dan rasa, dengan kisaran pH optimal antara 6,5 dan 6,7. Warna putih susu disebabkan oleh kasein, sedangkan warna kekuningan berasal dari karoten. Penentuan kualitas susu segar seringkali sulit dilakukan saat pembelian karena ketidakpastian lama penyimpanan. Beberapa penelitian telah mengeksplorasi metode untuk menilai kelayakan susu berdasarkan parameter seperti pH, warna, dan gas amonia. Penelitian ini bertujuan untuk mendeteksi durasi penyimpanan susu sapi segar menggunakan metode K-Nearest Neighbors (K-NN) dengan parameter tingkat keasaman dan perubahan warna. Sistem berbasis Arduino UNO akan menggunakan sensor pH (PH-4502C) dan sensor warna (TCS-3200) untuk menganalisis sampel susu sapi. Algoritma K-NN yang menggunakan supervised learning, akan mengklasifikasikan data susu berdasarkan data latih (training data) yang telah ada, dengan hasil ditampilkan pada layar LCD I2C Display. Metode ini dipilih karena efisiensi komputasinya pada jumlah data sedikit, dengan tingkat keakurasiannya bergantung pada pemilihan nilai K yang optimal.
Analisis Penerimaan Website Sistem Informasi Kalurahan Pleret Menggunakan Metode TAM Gunawan, Rizky Fadilah; Setiawan , Eko; Ratnasari, Asti; Rochmadi, Tri
Informatik : Jurnal Ilmu Komputer Vol 21 No 2 (2025): Agustus 2025
Publisher : Fakultas Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52958/iftk.v21i2.11841

Abstract

Kalurahan Pleret mengembangkan website Sistem Informasi sebagai bagian dari implementasi Sistem Pemerintahan Berbasis Elektronik (SPBE) guna meningkatkan kualitas layanan publik. Namun, penerapannya masih menghadapi kendala seperti gangguan sistem, rendahnya literasi digital masyarakat, dan keterbatasan akses internet. Penelitian ini bertujuan untuk menganalisis tingkat penerimaan masyarakat terhadap website tersebut menggunakan metode TAM, yang terdiri dari lima variabel utama: PU, PEOU, ATUT, BITU dan ATU. Metode analisis menggunakan pendekatan kuantitatif dengan SmartPLS melalui evaluasi outer model dan inner model. Hasil penelitian menunjukkan bahwa dari tujuh hipotesis yang diajukan, enam diterima dan satu ditolak, yang mengindikasikan tingkat penerimaan masyarakat tergolong tinggi. Hal ini didukung oleh nilai R-square pada PU sebesar 67,7%, BITU 71,1%, ATUT 50,5%, dan ATU 61,9%. Oleh karena itu, disarankan agar pengelola sistem terus meningkatkan fitur, desain antarmuka, dan kenyamanan penggunaan website, serta memberikan edukasi bertahap kepada masyarakat agar mereka mampu memahami dan memanfaatkan layanan yang tersedia secara optimal.
Semi-Adaptive Control Systems on Self-Balancing Robot using Artificial Neural Networks Setiawan, Eko; Setiawan , Eko; Syauqy, Dahnial
INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi Vol 5 No 2 (2021): August 2021
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (716.62 KB) | DOI: 10.29407/intensif.v5i2.15296

Abstract

A self-balancing type of robot works on the principle of maintaining the balance of the load's position to remains in the center. As a consequence of this principle, the driver can go forward reverse the vehicle by leaning in a particular direction. One of the factors affecting the control model is the weight of the driver. A control system that has been designed will not be able to balance the system if the driver using the vehicle exceeds or less than the predetermined weight value. The main objective of the study is to develop a semi-adaptive control system by implementing an Artificial Neural Network (ANN) algorithm that can estimate the driver's weight and use this information to reset the gain used in the control system. The experimental results show that the Artificial Neural Network can be used to estimate the weight of the driver's body by using 50-ms-duration of tilt sensor data to categorize into three defined classes that have been set. The ANN algorithm provides a high accuracy given by the results of the confusion matrix and the precision calculations, which show 99%.