Drezewski, Rafał
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Real-time mask-wearing detection in video streams using deep convolutional neural networks for face recognition Suhirman, Suhirman; Saifullah, Shoffan; Hidayat, Ahmad Tri; Kusuma, M. Apriandi; Drezewski, Rafał
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp1005-1014

Abstract

This research aims to develop a real-time mask-wearing detection system using deep convolutional neural networks (CNNs). This is crucial in the coronavirus disease 2019 (COVID-19) pandemic to alert individuals who are not wearing masks early on, thereby reducing the spread of the virus. Since COVID-19 primarily spreads through respiratory droplets and mask-wearing is recommended, our proposed study utilizes computer vision techniques, specifically image processing, to detect masked and unmasked faces. We employ a customized CNN architecture consisting of five convolutional layers, followed by max-pooling layers and fully connected (FC) layers. The final output layer utilizes softmax activation for classification. The model is updated with optimized layer configurations and parameter values. We are developing an application that uses a digital camera as an input device. The application utilizes a dataset comprising 11,792 image samples, which are used for training and testing purposes with the 80:20 ratio. Real-time testing is conducted using human subjects captured by the camera. The experimental results demonstrate that the CNN method achieves a classification accuracy of 99% on the training data and 98.83% during real-time video testing. These findings suggest that the real-time mask detection system using CNN performs effectively.
Redefining brain tumor segmentation: a cutting-edge convolutional neural networks-transfer learning approach Saifullah, Shoffan; Dreżewski, Rafał
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp2583-2591

Abstract

Medical image analysis has witnessed significant advancements with deep learning techniques. In the domain of brain tumor segmentation, the ability to precisely delineate tumor boundaries from magnetic resonance imaging (MRI) scans holds profound implications for diagnosis. This study presents an ensemble convolutional neural network (CNN) with transfer learning, integrating the state-of-the-art Deeplabv3+ architecture with the ResNet18 backbone. The model is rigorously trained and evaluated, exhibiting remarkable performance metrics, including an impressive global accuracy of 99.286%, a high-class accuracy of 82.191%, a mean intersection over union (IoU) of 79.900%, a weighted IoU of 98.620%, and a Boundary F1 (BF) score of 83.303%. Notably, a detailed comparative analysis with existing methods showcases the superiority of our proposed model. These findings underscore the model’s competence in precise brain tumor localization, underscoring its potential to revolutionize medical image analysis and enhance healthcare outcomes. This research paves the way for future exploration and optimization of advanced CNN models in medical imaging, emphasizing addressing false positives and resource efficiency.