Putra, Agung Bella Utama
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Urban Traffic Volume Prediction using LSTM and Bi-LSTM: Performance Evaluation on the Metro Interstate Dataset Pranolo, Andri; Saifullah, Shoffan; Putra, Agung Bella Utama; Dreżewski, Rafał; Wibawa, Aji Prasetya
ILKOM Jurnal Ilmiah Vol 17, No 3 (2025)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v17i3.3001.227-240

Abstract

Urban traffic forecasting underpins the mitigation of congestion, enhancement of road safety, and reduction of emissions in intelligent transportation systems. We benchmark Long Short-Term Memory (LSTM) and Bidirectional LSTM (Bi-LSTM) models on the Metro Interstate Traffic Volume dataset under an identical preprocessing and training pipeline for a fair comparison. Using a 24-hour multivariate input window (temperature, rainfall, snowfall, cloud cover), LSTM delivers the best overall balance of accuracy and efficiency on the full test sequence (RMSE = 0.196, MAPE = 2.36%, R² = 0.480; 7,344 s training). Bi-LSTM achieves competitive short-window accuracy but underperforms on the full sequence (RMSE = 0.231, MAPE = 2.92%, R² = 0.280; 12,672 s training). We attribute the Bi-LSTM gap to prediction "flattening" over long horizons, i.e., over-smoothed peaks from bidirectional averaging, despite its slightly stronger short-segment fit. Compared with prior RNN/GRU/CNN baselines on the same data, LSTM improves variance explanation while remaining deployable for near-real-time use. We also examine seasonality (daily/weekly cycles), weather effects, and data imbalance (peak versus off-peak) as factors that shape model error. These results support LSTM as a practical default for city-scale forecasting and motivate future work with attention/Transformer encoders and richer exogenous signals (incidents, events). The findings inform policy by enabling proactive traffic management that can reduce delays, emissions, and crash risk through earlier, data-driven interventions.
Geographic-Origin Music Classification from Numerical Audio Features: Integrating Unsupervised Clustering with Supervised Models Pranolo, Andri; Sularso, Sularso; Anwar, Nuril; Putra, Agung Bella Utama; Wibawa, Aji Prasetya; Saifullah, Shoffan; Dreżewski, Rafał; Nuryana, Zalik; Andi, Tri
Buletin Ilmiah Sarjana Teknik Elektro Vol. 7 No. 4 (2025): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v7i4.13400

Abstract

Classifying the geographic origin of music is a relevant task in music information retrieval, yet most studies have focused on genre or style recognition rather than regional origin. This study evaluates Support Vector Machine (SVM) and Convolutional Neural Network (CNN) models on the UCI Geographical Origin of Music dataset (1,059 tracks from 33 non-Western regions) using numerical audio features. To incorporate latent structure, we first applied K-means clustering with the optimal number of clusters (k=2) determined by the Elbow and Silhouette methods. The cluster assignments were used as auxiliary signals for training, while evaluation relied on the true region labels. Classification performance was assessed with Accuracy, Precision, Recall, and F1-score. Results show that SVM achieved 99.53% accuracy (95% CI: 97.38–99.92%), while CNN reached 98.58% accuracy (95% CI: 95.92–99.52%); Precision, Recall, and F1 mirrored these values. The differences confirm SVM’s superior performance on this dataset, though the near-perfect scores also suggest strong separability in the feature space and potential risks of overfitting. Learning-curve analysis indicated stable training, and cluster supervision provided small but consistent benefits. Overall, SVM remains a reliable baseline for tabular music features, while CNNs may require spectro-temporal representations to leverage their full potential. Future work should validate these findings across multiple datasets, apply cross-validation with statistical significance testing, and explore hybrid deep models for broader generalization.