Claim Missing Document
Check
Articles

Found 9 Documents
Search

On Rainbow Antimagic Coloring of Joint Product of Graphs Brian Juned Septory; Liliek Susilowati; Dafik Dafik; M. Venkatachalam
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 4 (2023): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i4.17471

Abstract

Let  be a connected graph with vertex set  and edge set . A bijection  from  to the set  is a labeling of graph . The bijection  is called rainbow antimagic vertex labeling if for any two edge  and  in path , where  and . Rainbow antimagic coloring is a graph  which has a rainbow antimagic labeling. Thus, every rainbow antimagic labeling induces a rainbow coloring G where the edge weight  is the color of the edge . The rainbow antimagic connection number of graph  is the smallest number of colors of all rainbow antimagic colorings of graph , denoted by . In this study, we studied rainbow antimagic coloring and have an exact value of rainbow antimagic connection number of joint product of graph  where  is graph , graph , graph , graph  and graph .
Rainbow Antimagic Coloring pada Graf Hasil Operasi Join pada Graf Broom Dwi Agustin Retnowardani; Brian Juned Septory; Kamal Dliou; Audia Dwi Retno Wulandari
ESTIMATOR : Journal of Applied Statistics, Mathematics, and Data Science Vol. 1 No. 1 (2023)
Publisher : Program Studi Statistika Universitas PGRI Argopuro Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31537/estimator.v1i1.1180

Abstract

Misalkan adalah graf terhubung dengan himpunan titik dan himpunan sisi . Fungsi bijektif dari ke himpunan adalah pelabelan titik graf . Fungsi bijektif disebut rainbow antimagic labeling jika untuk setiap dua sisi dan dalam lintasan , dengan dan . Rainbow antimagic coloring adalah pewarnaan graf dengan rainbow antimagic labeling. Jadi, setiap rainbow antimagic labeling merupakan pewarnaan pelangi graf dengan bobot sisi adalah warna sisi . Rainbow antimagic connection number pada graf adalah jumlah warna terkecil dari semua rainbow antimagic coloring graf , dinotasikan dengan . Pada penelitian ini, dipelajari rainbow antimagic coloring dan mendapatkan nilai rainbow antimagic connection number graf hasil operasi join .
On Rainbow Antimagic Coloring of Joint Product of Graphs Septory, Brian Juned; Susilowati, Liliek; Dafik, Dafik; Venkatachalam, M.
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 4 (2023): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i4.17471

Abstract

Let  be a connected graph with vertex set  and edge set . A bijection  from  to the set  is a labeling of graph . The bijection  is called rainbow antimagic vertex labeling if for any two edge  and  in path , where  and . Rainbow antimagic coloring is a graph  which has a rainbow antimagic labeling. Thus, every rainbow antimagic labeling induces a rainbow coloring G where the edge weight  is the color of the edge . The rainbow antimagic connection number of graph  is the smallest number of colors of all rainbow antimagic colorings of graph , denoted by . In this study, we studied rainbow antimagic coloring and have an exact value of rainbow antimagic connection number of joint product of graph  where  is graph , graph , graph , graph  and graph .
Rainbow Antimagic Coloring pada Graf Hasil Operasi Comb Graf Lintasan Septory, Brian Juned; Retnowardani, Dwi Agustin; Hasanah, Laeliyatul; Kamal, Dliou
ESTIMATOR : Journal of Applied Statistics, Mathematics, and Data Science Vol. 2 No. 1 (2024)
Publisher : Program Studi Statistika Universitas PGRI Argopuro Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Misalkan ???? adalah graf terhubung dengan himpunan titik ????(????) dan himpunan sisi ????(????). Misalkan fungsi ????: ????(????) ? {1,2,3, … , |????(????)|} adalah fungsi bijektif. Bobot sisi dari graf ???? didefinisikan sebagai ????(????????) = ????(????) + ????(????). Jika terdapat lintasan ???? ? ???? dengan setiap dua sisi ????????, ????’????’ ? (????) pada lintasan ???? ? ???? mempunyai bobot yang berbeda yaitu, ????(????????) ? ????(??????????) maka fungsi bijektif ???? disebut rainbow antimagic labeling. Dengan demikian jika dipandang bobot sisi ????(????????) sebagai pewarnaan sisi ????????, maka ???? juga disebut rainbow antimagic coloring. Rainbow antimagic connection number adalah jumlah warna paling kecil dari semua rainbow antimagic coloring pada graf ????, dinotasikan dengan ????????????(????). Pada makalah ini, dipelajari tentang rainbow antimagic coloring dan diperoleh nilai dari rainbow antimagic connection number pada graf hasil operasi comb pada graf lintasan ????7 ? ????4 dan ????7 ? ????6.
Analyze of The Distance k-Domination Number of The Amalgamation of Complete and Star Graph Retnowardani, Dwi Agustin; Septory, Brian Juned; Kumanireng, Albert Mario; Kette, Efraim Kurniawan Dairo
ESTIMATOR : Journal of Applied Statistics, Mathematics, and Data Science Vol. 2 No. 2 (2024):
Publisher : Program Studi Statistika Universitas PGRI Argopuro Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31537/estimator.v2i2.2198

Abstract

Penelitian ini meneliti konsep bilangan dominasi jarak-k (distance k-domination number) dengan secara khusus mengkaji penerapannya pada graf amalgamasi pada graf lengkap dan graf bintang. Graf amalgamasi, yang dinotasikan sebagai Amal(G,v,n), adalah graf yang dibangun dari graf dasar G, sebuah simpul tertentu v di G, dan bilangan bulat positif n. Graf amalgamasi dibentuk dengan menyisipkan n salinan dari graf G pada simpul v, di mana semua simpul v dalam n salinan tersebut digabungkan menjadi satu titik. Bilangan dominasi jarak-k adalah kardinalitas minimum dari himpunan dominasi jarak-k, yang dinotasikan sebagai ?_k (G). Melalui formulasi matematika dan prinsip-prinsip teori graf, kami menetapkan sifat-sifat dan batasan bilangan dominasi jarak-k pada amalgamasi graf lengkap (K_n) dan graf bintang (S_n).
Analyze of The Distance k-Domination Number of The Amalgamation of Complete and Star Graph Retnowardani, Dwi Agustin; Septory, Brian Juned; Kumanireng, Albert Mario; Kette, Efraim Kurniawan Dairo
ESTIMATOR : Journal of Applied Statistics, Mathematics, and Data Science Vol. 2 No. 2 (2024):
Publisher : Program Studi Statistika Universitas PGRI Argopuro Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31537/estimator.v2i2.2198

Abstract

Penelitian ini meneliti konsep bilangan dominasi jarak-k (distance k-domination number) dengan secara khusus mengkaji penerapannya pada graf amalgamasi pada graf lengkap dan graf bintang. Graf amalgamasi, yang dinotasikan sebagai Amal(G,v,n), adalah graf yang dibangun dari graf dasar G, sebuah simpul tertentu v di G, dan bilangan bulat positif n. Graf amalgamasi dibentuk dengan menyisipkan n salinan dari graf G pada simpul v, di mana semua simpul v dalam n salinan tersebut digabungkan menjadi satu titik. Bilangan dominasi jarak-k adalah kardinalitas minimum dari himpunan dominasi jarak-k, yang dinotasikan sebagai ?_k (G). Melalui formulasi matematika dan prinsip-prinsip teori graf, kami menetapkan sifat-sifat dan batasan bilangan dominasi jarak-k pada amalgamasi graf lengkap (K_n) dan graf bintang (S_n).
Rainbow Antimagic Coloring pada Graf Hasil Operasi Comb Graf Lintasan Septory, Brian Juned; Retnowardani, Dwi Agustin; Hasanah, Laeliyatul; Kamal, Dliou
ESTIMATOR : Journal of Applied Statistics, Mathematics, and Data Science Vol. 2 No. 1 (2024)
Publisher : Program Studi Statistika Universitas PGRI Argopuro Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31537/estimator.v2i1.2022

Abstract

Misalkan ???? adalah graf terhubung dengan himpunan titik ????(????) dan himpunan sisi ????(????). Misalkan fungsi ????: ????(????) ? {1,2,3, … , |????(????)|} adalah fungsi bijektif. Bobot sisi dari graf ???? didefinisikan sebagai ????(????????) = ????(????) + ????(????). Jika terdapat lintasan ???? ? ???? dengan setiap dua sisi ????????, ????’????’ ? (????) pada lintasan ???? ? ???? mempunyai bobot yang berbeda yaitu, ????(????????) ? ????(??????????) maka fungsi bijektif ???? disebut rainbow antimagic labeling. Dengan demikian jika dipandang bobot sisi ????(????????) sebagai pewarnaan sisi ????????, maka ???? juga disebut rainbow antimagic coloring. Rainbow antimagic connection number adalah jumlah warna paling kecil dari semua rainbow antimagic coloring pada graf ????, dinotasikan dengan ????????????(????). Pada makalah ini, dipelajari tentang rainbow antimagic coloring dan diperoleh nilai dari rainbow antimagic connection number pada graf hasil operasi comb pada graf lintasan ????7 ? ????4 dan ????7 ? ????6.
On the RACN of the comb product of the cycle C_3 with path P_n and broom Br_(n,m) Septory, Brian Juned; Retnowardani, Dwi Agustin; Dliou, Kamal
Journal Focus Action of Research Mathematic (Factor M) Vol. 8 No. 1 (2025): Vol. 8 No. 1 (2025)
Publisher : Universitas Islam Negeri (UIN) Syekh Wasil Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30762/f_m.v8i1.4755

Abstract

The combination of rainbow coloring and anti-magic labeling is known as Rainbow Antimagic Coloring (RAC). The Rainbow Antimagic Connection Number (RACN) of a graph G is the smallest number of colors induced by all edge weights under an antimagic labeling, symbolized as rac(G) A graph is said to have rainbow antimagic connectivity if for every pir of vetices x∈V(G), there exits a rainbow antimagic path, wherin all edge weights along the path are distinct. Let G be a graph with vertex set V(G) and edge set E(G). A bijective function f from V(G) to {1,2,…,|V(G)|} is applied, wherein the weight of the edge uv∈E(G) is defined as w(uv) under f which is obtained from w(xv)=f(x)+f(v). A rainbow path x-v is a path in a vertex-labeled graph G if for any two edges xv,x' v'∈E(P) the path satisfies w(xv)≠w(x'v'). If there is a rainbow x-v path P for every two vertices x,v∈V(G) then the function f is called a rainbow antimagic labeling of G. A graph G we say has an RAC, if we assign each edge xv with an edge weight color w(xv). In this paper, we present the RACN of the comb product of cycle C_3 with path P_n and broom Br_(n,m) symbolized by C_3⊳ P_n and C_3⊳Br_(n,m). A comb operation on a graph G, symbolized as G⊳H, is a graph product wherein each vertex of G is replaced by a copy of H, maintaining the structure of G. This operation helps construct new classes of graphs with specific connectivity and labeling properties.
Penerapan Konsep Matematika dalam Pengelolaan Keuangan Rumah Tangga di Desa Penfui Timur Pahnael, Jusrry Rosalina; Guntur, Robertus Dole; Lobo, Maria; Kleden, Maria Agustina; Atti, Astri; Wadu, Mira; Septory, Brian Juned; Nafi, Sulche Ifone
Jurnal Pengabdian Kepada Masyarakat Undana Vol 19 No 1 (2025): JUNI 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jpkmlppm.v19i1.18757

Abstract

Abstract Women in Penfui Timur Village as household financial managers mostly only depend on their husband's income which has been used or deducted by the Bank or cooperative because it is used to build a house or other business. However, some of them lack creativity in increasing other income or investing their husband's money in the form of small businesses or investments. Therefore, mathematics lecturers in collaboration with economics lecturers will provide enlightenment in the form of delivering materials and exercises and sharing experiences in terms of managing household finances fairly, wisely, and creatively innovatively. Our hope is that after receiving learning and sharing experiences from competent lecturers in mathematics and economics, women in Penfui Timur Village will be strengthened and have ideas in managing household finances efficiently and fairly and be creative in building alternative household businesses that of course see the market share to improve the economy in the home. With the aim that no family is lacking in material so that the next generation of the nation can go to school and have creativity with good nutritional value in order to achieve intelligence for all Indonesian people because they have parents who are diligent, creative, fair and wise in managing finances as a whole. Keywords: Mathematical concepts, Finance, Household, Creative, Entrepreneurship