Claim Missing Document
Check
Articles

Found 4 Documents
Search

Production of activated carbon from coal with H3PO4 activation for adsorption of Fe(II) and Mn(II) in acid mine drainage Suliestyah, Suliestyah; Tuheteru, Edy Jamal; Yulianti, Ririn; Palit, Christin; Yomaki, Caroline Claudia; Ahmad, Shahrul Nizam
Journal of Degraded and Mining Lands Management Vol. 11 No. 3 (2024)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2024.113.5755

Abstract

Acid Mine Drainage (AMD) contains Fe(II) and Mn(II) metals, which can cause environmental pollution. This research aimed to investigate the potency of activated carbon made from coal as an adsorbent in AMD treatment. The carbon was made of coal and activated with H3PO4 in a weight ratio of 40%, 800 °C for 120 minutes while supplying 1.5 L/min of nitrogen during the carbonization process. The result shows that BET surface area, total pore volume, and iodine number were 296.4 m2/g, 0.156 cc/g, and 1205 mg/g, respectively. The surface contained many fractures, channels, and big holes, as evidenced by the FT-IR and SEM investigations, and it also had acidic surface functional groups. The optimum contact time adsorption for AMD treatment was 30 minutes, and the first concentration of Fe(II) and Mn(II) metals affected the adsorption. The optimum removal of Fe(II) in AMD treatment was 95.27% at an initial concentration of 3.51 ppm, while the optimum removal of Mn(II) was 99.82% at an initial concentration of 5.71 ppm. This activated carbon has a considerable potency to be used as the adsorbent in AMD treatment to reduce Fe(II) and Mn(II) levels.
Synthesis and Characterization of Aluminosilicate Catalysts from Volcano Mud for Biofuel Production with Different Feedstocks Hartati, Hartati; A'yuni, Qurrota; Dewi, Nita Safira; Firda, Putri Bintang Dea; Izzah, Adiba Naila; Prasetyoko, Didik; Harmami, Harmami; Ahmad, Shahrul Nizam
Indonesian Journal of Chemistry Vol 24, No 6 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.96149

Abstract

The increasing awareness of sustainable development goals has led to the intensive development of biofuel as a substitute for fossil fuels. This study investigates the potency of volcano mud (VM) as the precursor in synthesizing aluminosilicate catalysts for biofuel production. Three catalysts were synthesized, A3, A3T, and A5, in a manner to investigate the effect of tetrapropylammonium hydroxide (TPAOH) addition and hydrothermal time on the crystallinity, Si/Al ratio, and textural properties of the catalysts. The catalytic activity of the synthesized catalysts was evaluated in two different qualities of feedstock, i.e., oleic acid (OA) and waste cooking oil (WCO). It is found that A5 which is synthesized with longer hydrothermal of 5 h has desirable properties, a high mesoporous surface area of 159 m2/g, and a high acidity of 0.263 mmol/g. Catalyst A5 is proven to have similarly high catalytic activity in both WCO and OA feedstock, achieving a liquid yield of 93% with FAME selectivity of 95% for WCO and 95% liquid yield and FAME selectivity of 99% for OA feedstock. These results suggest that A5 is a versatile catalyst in biofuel production from either high or low-quality feedstocks.
Nonenzymatic Sensor Based on Glassy Carbon Electrode Modified by Platinum Nanoparticles Decorated Reduced Graphene Oxide for Glucose Detection in Human Urine Nisa, Ulfiatun; Iswantini, Dyah; Ahmad, Shahrul Nizam; Mahat, Mohd Muzamir; Putra, Budi Riza; Saskito, Dinda Iryawati Bedy; Wahyuni, Wulan Tri
Jurnal Kimia Valensi Jurnal Kimia VALENSI, Volume 10, No. 2, November 2024
Publisher : Syarif Hidayatullah State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v10i2.40035

Abstract

This research aims to develop a sensitive and selective nonenzymatic electrochemical sensor for glucose detection using a glassy carbon electrode modified with platinum nanoparticles (PtNPs) decorated on reduced graphene oxide (RGO). The structural properties and surface morphology of PtNPs/RGO composite were characterized using Raman spectroscopy and scanning electron microscopy (SEM). In addition, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were employed to investigate glucose measurements in human urine samples. The developed sensor shows an increasing anodic peak of glucose with a linear response at a concentration range from 10 to 1000 µM, with a detection limit of 5 µM. The proposed sensor also demonstrated good reproducibility, indicated by the value of relative standard deviation (%RSD) of 3.9%, and maintained its current response over seven consecutive measurements. Moreover, the proposed sensor exhibited high selectivity for glucose detection against several potential interferences, such as potassium (K+), chloride (Cl−), magnesium (Mg2+), ascorbic acid, dopamine, and urea, with recovery values of 96-102%, which are acceptable within the analytical range. Furthermore, this proposed sensor successfully detected glucose in human urine samples, and their concentrations were not significantly different when measured with a commercial glucose sensor.
Nonenzymatic Sensor Based on Glassy Carbon Electrode Modified by Platinum Nanoparticles Decorated Reduced Graphene Oxide for Glucose Detection in Human Urine Nisa, Ulfiatun; Iswantini, Dyah; Ahmad, Shahrul Nizam; Mahat, Mohd Muzamir; Putra, Budi Riza; Saskito, Dinda Iryawati Bedy; Wahyuni, Wulan Tri
Jurnal Kimia Valensi Jurnal Kimia VALENSI, Volume 10, No. 2, November 2024
Publisher : Department of Chemistry, Faculty of Science and Technology Syarif Hidayatullah Jakarta State Islamic University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jkv.v10i2.40035

Abstract

This research aims to develop a sensitive and selective nonenzymatic electrochemical sensor for glucose detection using a glassy carbon electrode modified with platinum nanoparticles (PtNPs) decorated on reduced graphene oxide (RGO). The structural properties and surface morphology of PtNPs/RGO composite were characterized using Raman spectroscopy and scanning electron microscopy (SEM). In addition, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were employed to investigate glucose measurements in human urine samples. The developed sensor shows an increasing anodic peak of glucose with a linear response at a concentration range from 10 to 1000 µM, with a detection limit of 5 µM. The proposed sensor also demonstrated good reproducibility, indicated by the value of relative standard deviation (%RSD) of 3.9%, and maintained its current response over seven consecutive measurements. Moreover, the proposed sensor exhibited high selectivity for glucose detection against several potential interferences, such as potassium (K+), chloride (Cl−), magnesium (Mg2+), ascorbic acid, dopamine, and urea, with recovery values of 96-102%, which are acceptable within the analytical range. Furthermore, this proposed sensor successfully detected glucose in human urine samples, and their concentrations were not significantly different when measured with a commercial glucose sensor.