Claim Missing Document
Check
Articles

Found 15 Documents
Search

Development of a Machine Learning Model to Predict the Corrosion Inhibition Ability of Benzimidazole Compounds Safitri, Aprilyani Nur; Trisnapradika, Gustina Alfa; Kurniawan, Achmad Wahid; Prabowo, Wahyu AJi Eko; Akrom, Muhamad
Journal of Multiscale Materials Informatics Vol. 1 No. 1 (2024): April
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jimat.v1i1.10464

Abstract

The purpose of this study is to use quantitative structure-property relationship (QSPR)-based machine learning (ML) to examine the corrosion inhibition capabilities of benzimidazole compounds. The primary difficulty in ML development is creating a model with a high degree of precision so that the predictions are correct and pertinent to the material's actual attributes. We assess the comparison between the extra trees regressor (EXT) as an ensemble model and the decision tree regressor (DT) as a basic model. It was discovered that the EXT model had better predictive performance in predicting the corrosion inhibition performance of benzimidazole compounds based on the coefficient of determination (R2) and root mean square error (RMSE) metrics compared DT model. This method provides a fresh viewpoint on the capacity of ML models to forecast potent corrosion inhibitors.
Penerapan Gamifikasi Materi Pembelajaran Tingkat SMA dengan Menggunakan Wordwall Setiyanto, Noor Ageng; Hidayat, Novianto Nur; Akrom, Muhamad; Pertiwi, Ayu; Aprihartha, Moch. Anjas; Safitri, Aprilyani Nur; Sudibyo, Usman; Prabowo, Wahyu Aji Eko; Al Azies, Harun; Naufal, Muhammad
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 8, No 1 (2025): JANUARI 2025
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/ja.v8i1.2851

Abstract

Kegiatan Pengabdian Masyarakat ini dilaksanakan di SMA Negeri 2 Mranggen, Demak, dengan tujuan untuk menciptakan variasi materi pembelajaran melalui proses gamifikasi, sehingga pembelajaran menjadi lebih menarik dan interaktif bagi siswa tingkat menengah. Tema dari kegiatan ini adalah gamifikasi materi pembelajaran menggunakan alat bantu Wordwall, yang memungkinkan pengintegrasian elemen permainan dalam proses belajar-mengajar. Kegiatan ini melibatkan para guru di SMA Negeri 2 Mranggen, Demak. Metode yang digunakan meliputi observasi untuk memahami kebutuhan pembelajaran di sekolah, serta pelatihan langsung dalam bentuk seminar, demonstrasi, dan sesi diskusi interaktif. Teknik ini dirancang agar para guru dapat memahami konsep gamifikasi, mempraktikkan penggunaan Wordwall, dan mengembangkan materi ajar yang kreatif serta sesuai dengan kurikulum yang ada. Hasil kegiatan menunjukkan bahwa implementasi gamifikasi materi pembelajaran melalui Wordwall efektif dalam meningkatkan pemahaman guru terhadap konsep gamifikasi. Selain itu, para guru merasa terbantu dan termotivasi untuk menciptakan materi pembelajaran yang lebih kreatif, menarik, dan dinamis.
Broad Learning System for Investigating Corrosion Inhibition Efficiency of Heterocyclic Compounds Akrom, Muhamad; Prabowo, Wahyu Aji Eko
(JAIS) Journal of Applied Intelligent System Vol. 4 No. 2 (2019): Journal of Applied Intelligent System
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jais.v4i2.12487

Abstract

This study explores the use of Broad Learning Systems (BLS) to predict the corrosion inhibition efficiency (CIE) of heterocyclic compounds, addressing limitations of deep neural networks (DNNs) such as vanishing gradients and computational inefficiency. BLS prioritizes network width over depth, enabling faster learning and improved generalization. Trained on quantum chemical properties (QCPs) of 192 heterocyclic compounds, BLS outperformed multilayer perceptron neural networks (MLPNN) and random forest (RF) models, achieving lower mean absolute error (MAE: 1.41), root mean square error (RMSE: 1.79), and higher R² (0.993). Predicted CIE values for quinoxaline derivatives (95.39% and 94.05%) aligned closely with experimental data. This study demonstrates the potential of BLS as an efficient, accurate, and scalable approach for predicting corrosion inhibition capabilities, contributing to advancements in corrosion science and environmentally friendly solutions. Keywords - machine learning, broad learning system, neural network, corrosion.
Classical-Quantum CNN Hybrid for Image Classification Akrom, Muhamad; Prabowo, Wahyu Aji Eko
Techno.Com Vol. 18 No. 4 (2019): November 2019
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/tc.v18i4.12488

Abstract

This study explores Quantum Convolutional Neural Network (QCNN) starting from foundational quantum operations, such as the Rx gate for encoding MNIST image data into quantum states. We implemented quantum convolutional and pooling layers using one_unitary and two_unitary circuits, enabling effective feature extraction and dimensionality reduction while preserving critical information. Expressibility analysis revealed varying capabilities across different one_unitary circuits, with Rx, Ry, and Rz combinations demonstrating promising results akin to Haar random states. The proposed QCNN model exhibited robust performance metrics (accuracy: 95.98%, precision: 94.44%, recall: 96.59%, F1-score: 0.9551, AUC: 0.9604) in classification tasks, supported by efficient convergence during optimization. Future directions include expanding QCNN applications to handle more complex datasets and optimizing architectures to enhance quantum machine learning capabilities, particularly in image processing. This study underscores the potential of QCNNs in advancing quantum computing applications in neural network architectures. Keywords: MNIST, classification, CNN, expressibility
Evaluating Gate-Based Quantum Machine Learning Models on Quantum Chemistry Datasets Prabowo, Wahyu Aji Eko; Akrom, Muhamad
Journal of Multiscale Materials Informatics Vol. 2 No. 1 (2025): April
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jimat.v2i1.12950

Abstract

This study evaluates gate-based quantum machine learning (QML) models, including the Variational Quantum Classifier (VQC) and Quantum k-Nearest Neighbors (QkNN), on the QM9 quantum chemistry dataset for binary classification of molecular electronic properties. Using IBM Qiskit, both models were tested on simulators and real quantum hardware. Classical models (LightGBM, SVM, MLP) served as benchmarks. Results show classical models outperform quantum ones, with LightGBM achieving the highest AUC-ROC (0.901). However, VQC on simulators achieved a competitive AUC of 0.781, and real hardware still yielded performance above that of chance. Despite hardware constraints, quantum models demonstrated learning capability. The findings support hybrid quantum-classical systems as a promising near-term approach while quantum hardware continues to evolve
Klasifikasi Penyakit Diabetes Menggunakan Pendekatan Pembelajaran Mesin dengan Model Non-linier Adi, Ilham Arif Kuncoro; Prabowo, Wahyu Aji Eko
JURIKOM (Jurnal Riset Komputer) Vol 12, No 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8586

Abstract

The increasing prevalence of diabetes mellitus highlights the need for accurate early detection methods. This study proposes a classification model for diabetes prediction using non-linear machine learning algorithms, namely Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (K-NN). The dataset, obtained from Kaggle, includes clinical features such as glucose levels, BMI, blood pressure, and insulin. The methodology comprises data preprocessing, partitioning the data into training and testing sets, and evaluating the model’s using accuracy, precision, recall, and F1-score. Experimental results indicate that the Random Forest algorithm achieved the highest performance, followed by SVM and K-NN. We attribute Random Forest’s superior performance to its robustness in handling complex patterns and minimizing overfitting. We expect this research to contribute to developing practical early detection tools for diabetes, thereby supporting timely and data-driven medical decision-making.
Pemanfaatan Model Linier dalam Klasifikasi Penyakit Diabetes Berbasis Machine Learning Ajisaputra, Faris Prasetya; Prabowo, Wahyu Aji Eko
JURIKOM (Jurnal Riset Komputer) Vol 12, No 3 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i3.8587

Abstract

Diabetes is a chronic disease that may lead to serious health complications if not detected and treated early. Early detection plays a crucial role in minimizing long-term risks. This study aims to classify diabetes cases using a machine-learning approach based on linear models. The models applied in this research include logistic regression, linear discriminant analysis (LDA), ridge classifier, and support vector machine (SVM) with a linear kernel. We preprocessed the dataset to ensure quality and consistency. We evaluated each model’s performance using accuracy, precision, recall, F1-score, and AUC-ROC. Experimental results show that the ridge classifier achieved the highest performance, followed by LDA and linear SVM, with comparable results. Logistic regression also performed reasonably well, albeit with slightly lower metrics. These findings indicate that the linear model can provide accurate and reliable classification in the task of predicting diabetes, contributing to the proof that this model can serve as the basis for a decision support system for early diabetes diagnosis in the healthcare sector.
Analisis Performansi Model Machine Learning dalam Klasifikasi Penyakit Diabetes Tipe 2 Hidayatulloh, Ryan; Prabowo, Wahyu Aji Eko
JURIKOM (Jurnal Riset Komputer) Vol. 12 No. 4 (2025): Agustus 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i4.8747

Abstract

Type 2 Diabetes Mellitus is a chronic disease that develops gradually and can lead to serious complications—such as heart disease, kidney failure, and blindness—if not detected early. This study aims to evaluate and compare the performance of four machine learning algorithms—Logistic Regression, Random Forest, Multilayer Perceptron, and Deep Neural Network—in predicting the risk of type 2 diabetes based on medical data. The analysis uses the Pima Indians Diabetes dataset, which contains 9.538 patient records and 16 predictor variables. We split the data into training and testing sets using an 80:20 ratio. During training, we performed hyperparameter tuning using Grid Search combined with cross-validation. To evaluate model performance, we applied several metrics, including accuracy, precision, recall, F1-score, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R², and an analysis of overfitting. The results indicate that the Random Forest model outperformed the others, achieving 100% accuracy, zero classification errors, near-zero prediction error values, and no signs of overfitting. Logistic Regression also performed well, though slightly below the Random Forest. In contrast, the Multilayer Perceptron and Deep Neural Network models showed mild overfitting and higher false negative rates. Based on these findings, we recommend the Random Forest model as the most reliable option for early prediction systems in type 2 diabetes mellitus.
Eksplorasi Penggunaan Platform Kahoot! Sebagai Media Belajar Matematika Pada Siswa Kelas VIII SMP Aprihartha, Moch. Anjas; Prabowo, Wahyu Aji Eko; Wibawa, Vincentius Hadianta
Jurnal Inovasi Penelitian dan Pengabdian Masyarakat Vol. 4 No. 2 (2024): Desember
Publisher : Indonesia Emerging Literacy Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53621/jippmas.v4i2.383

Abstract

Pembelajaran merupakan mekanisme penyerapan ilmu pengetahuan yang terjadi di kelas. Dalam prosesnya terdapat aktivitas siswa dan guru yang didukung oleh media, alat, metode, serta bahan ajar yang sesuai dengan kebutuhan di kelas. Permasalahan yang dialami dalam proses belajar pada umumnya dapat berdampak signifikan pada efektifitas pendidikan dan pencapaian hasil belajar. Oleh karena itu diperlukan adopsi teknik belajar yang lebih dinamis dan interaktif agar proses belajar menjadi menyenangkan. Salah satunya dengan memanfaatkan platform Kahoot!. Platform Kahoot! merupakan website yang menyediakan media pembelajaran berbasis permainan interaktif. Pengabdian ini bertujuan untuk mengevaluasi kesesuaian penggunaan platform Kahoot! dalam pengembangan metode belajar serta akan dilakukan analisis sejauh mana respon siswa terhadap penggunaan fitur interaktif platform ini. Pelaksanaan kegiatan pengabdian ini berlokasi di SMPN 3 Gunung Sari dengan mengambil sampel siswa kelas VIII. Metode yang diterapkan meliputi studi lapangan, melatih siswa menggunakan Kahoot!, dan evaluasi hasil belajar. Secara keseluruhan dari hasil evaluasi yang telah dilaksanakan, siswa kelas VIII SMPN 3 Gunung Sari sepakat bahwa platform Kahoot! dapat memberikan pengalaman baru yang menyenangkan dalam menjalankan proses belajar matematika, terutama dari segi tampilan dan kejelasan soal yang dapat dipahami oleh peserta didik.
Implementasi Deep Neural Network untuk Prediksi Harga Saham PT Bank Central Asia Tbk Almasah, Muhammad Rakha; Prabowo, Wahyu Aji Eko
JURNAL RISET KOMPUTER (JURIKOM) Vol. 12 No. 2 (2025): April 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v12i2.8544

Abstract

Stock price prediction is one of the main challenges in financial market analysis. This study develops a Deep Neural Network (DNN) model using TensorFlow to predict the stock price of PT Bank Central Asia Tbk (BBCA) based on historical stock price data, the Jakarta Composite Index (IHSG), and the USD/IDR exchange rate. The model is optimized through hyperparameter tuning using KerasTuner with the Hyperband method, allowing for more efficient exploration of hyperparameter combinations. The tuning process yielded the best model configuration with a learning rate of 0.001269, four hidden layers, and the application of Batch Normalization, L2 kernel regularization, and dropout in each hidden layer.The model was evaluated using various batch sizes (4, 16, 32, 64, and 128) with Mean Squared Error (MSE) and Mean Absolute Error (MAE) as performance metrics. The results show that batch size 128 provides the best performance, with MSE of 0.0094 and MAE of 0.0490 on the test data, indicating high accuracy and good generalization on unseen data. The best model was then implemented as an API using Flask, deployed to Google Cloud Run, and integrated with a Flutter-based mobile application. Testing confirmed that the API can handle requests quickly using TensorFlow and produce accurate predictions.Thus, this study successfully developed a DNN-based BBCA stock price prediction system that can be applied to data-driven investment decision-making.