Rahardiantoro, Septian
2Department Of Statistics, Faculty Of Mathematics And Natural Science, IPB University, West Java, 16680, Indonesia

Published : 23 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 23 Documents
Search

Missing Value Estimation Using Fuzzy C-Means in Classification of Chronic Kidney Disease: Pendugaan Missing Values Menggunakan Fuzzy C - Means Pada Pengklasifikasian Penyakit Ginjal Kronik Eria, Raisa Nida; Alamudi, Aam; Sulvianti, Itasia Dina; Silvianti, Pika; Rahardiantoro, Septian
Indonesian Journal of Statistics and Applications Vol 9 No 1 (2025)
Publisher : Statistics and Data Science Program Study, IPB University, IPB University, in collaboration with the Forum Pendidikan Tinggi Statistika Indonesia (FORSTAT) and the Ikatan Statistisi Indonesia (ISI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v9i1p21-32

Abstract

Based on World Health Organization (WHO) the cases of death due to Chronic Kidney Disease (CKD) ranked the 10th worldwide in 2020. CKD need to be done prevent early. History data to identify individuals predisposed to CKD in this research. In this research data contains missing values, therefore using Fuzzy C - Means (FCM) method to address it. The percentage of error in clustering CKD using FCM method is 20,25% and balanced accuracy of 84,80%. The result from classification using Classification and Regression Trees (CART) shows that accuracy value of 97,50%; sensitivity of 100,00%; and specificity of 92,86%. Individual suffer from CKD if having (1) hemoglobin more than or equal 13; spesific gravity 1,020 or 1,025; serum creatinine less than 1,3; albumin 1 or 2 or 3 or 4 or 5; and sugar 0 or 2 or 3 or 4 or 5, (2) hemoglobin more than or equal 13; spesific gravity 1,020 or 1,025; and serum creatinine more than or equal 1,3, (3) hemoglobin more than or equal 13 and spesific gravity 1,005 or 1,010 or 1,015, (4) hemoglobin less than 13 and red blood cell count less than 5,5.
Spatio-temporal Clustering Analysis of Dengue Hemorrhagic Fever Cases in West Java 2016 – 2021: Analisis Penggerombolan Spasio-temporal Kasus DBD di Jawa Barat Tahun 2016 – 2021 Yanti, Yusma; Rahardiantoro, Septian; Dito, Gerry Alfa
Indonesian Journal of Statistics and Applications Vol 7 No 1 (2023)
Publisher : Statistics and Data Science Program Study, IPB University, IPB University, in collaboration with the Forum Pendidikan Tinggi Statistika Indonesia (FORSTAT) and the Ikatan Statistisi Indonesia (ISI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v7i1p56-63

Abstract

In 2020, WHO included dengue as a global health threat among 10 other diseases. This is also a problem in Indonesia, especially the province of West Java. Based on data from the Ministry of Health for 2022, West Java is the largest contributor to cases of Dengue Hemorrhagic Fever (DHF) in Indonesia. The spread of dengue fever is through mosquitoes, but climate also greatly influences the spread of this disease. The spread of West Java is quite wide, consisting of 27 city districts and a relatively high population density. This greatly influences the increase in the number of dengue fever cases. In this research, we will group years with the same dengue fever cases and identify groups of districts/cities in West Java with the same pattern of dengue fever cases for 2016 to 2021. The results obtained are that 2016 is the group with the highest number of cases. Meanwhile, from 27 city districts in West Java, three groups were obtained. Group 1 is the group with the highest number of cases consisting of Sukabumi City, Bandung City, Cimahi City, Depok City, Tasikmalaya City.
Acne Severity Classification Study Using Convolutional Neural Network Algorithm with MobileNetV2 Architecture: Kajian Klasifikasi Tingkat Keparahan Jerawat Menggunakan Algoritma Convolutional Neural Network Ramadhani, Faadiyah; Rahardiantoro, Septian; Masjkur, Mohammad
Indonesian Journal of Statistics and Applications Vol 8 No 2 (2024)
Publisher : Statistics and Data Science Program Study, IPB University, IPB University, in collaboration with the Forum Pendidikan Tinggi Statistika Indonesia (FORSTAT) and the Ikatan Statistisi Indonesia (ISI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/ijsa.v8i2p112-128

Abstract

Data classification is a key technique in machine learning that maps patterns and features of input data into a target class. Significant developments in data classification occur in deep learning with neural networks and Convolutional Neural Networks (CNN) that are able to extract image features automatically. CNN can classify the level of a condition based on image data, one of which is the severity of acne. Acne (acne vulgaris) is a common skin disease with varying severity. This study aims to apply the CNN MobileNetV2 model to classify acne severity based on acne input images. The data consists of 1457 acne images at 4 severity levels divided into 80% training data and 20% test data. MobileNetV2 was used as a feature extractor through transfer learning. Fine-tuning and classification were performed using fully connected layers with ReLU and softmax activation functions. The model was evaluated with a confusion matrix and classification report. The model with a combination of hyperparameter batch size 16 and a learning rate of 0.00001 was the best model that achieved 87.29% accuracy with 89% precision, 84% recall, and 86% F1 score for classifying acne severity.