Claim Missing Document
Check
Articles

Found 3 Documents
Search

ANALISIS FAKTOR RISIKO KANKER PARU DENGAN PENDEKTANA LOG-LINIER: PERAN MEROKOK, KONSUMSI ALKOHOL, BATUK KRONIS, DAN PENYAKIT KRONIS Lubis, Mery Christyn; Sinaga, May Tabitha; Sitorus, Yolanda; Simangungsong, Enjelita; Anita
Trigonometri: Jurnal Matematika dan Ilmu Pengetahuan Alam Vol. 5 No. 2 (2024): Trigonometri: Jurnal Matematika dan Ilmu Pengetahuan Alam
Publisher : Cahaya Ilmu Bangsa Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.3483/trigonometri.v5i2.7849

Abstract

Kanker paru-paru merupakan penyakit dengan ciri khas adanya pertumbuhan sel yang tidak terkontrol pada jaringan paru-paru. Bila tidak dirawat, pertumbuhan sel ini dapat menyebar ke luar dari paruparu. Jika tidak ditanggapi dengan serius, akan dipastikan penderita kanker paru semakin lama akan semakin bertambah. Faktor-faktor risiko yang mempengaruhi kanker paru-paru adalah umur, jenis kelamin, konsumsi rokok, riwayat penyakit paru, riwayat keluarga, dan jenis pekerjaan. Untuk mengetahui faktor-faktor risiko yang paling mempengaruhi kanker paru maka dibentuklah sebuah model yang dapat membantu penerapan hubungan kausal (sebab-akibat) antara dua atau lebih dua peubah yaitu dengan menggunakan analisis regresi logistik. Yang bertujuan untuk menentukan faktor-faktor yang mempengaruhi dan mengetahui besar peluang masing-masing faktor risiko yang mempengaruhi kanker paru-paru. Hal ini menunjukkan bahwa kombinasi dari faktor-faktor ini memiliki pengaruh yang lebih besar dalam meningkatkan risiko kanker paru dibandingkan kombinasi lainnya. Intervensi yang berfokus pada pengurangan merokok dan konsumsi alkohol, terutama pada individu dengan gejala atau kondisi nyeri dada dan penyakit kronis, mungkin lebih efektif dalam upaya pencegahan kanker paru.
Analisis Menggunakan Peta Kendali I-MR dan Diagram Pareto pada Produksi Kayu Lapis di PT. SLJ Global Tbk, Samarinda Lubis, Mery Christyn; Simanjuntak, Ferdyanto Abangan; Payana, Sandi Dwi
AKSIOMA : Jurnal Sains Ekonomi dan Edukasi Vol. 2 No. 6 (2025): AKSIOMA : Jurnal Sains, Ekonomi dan Edukasi
Publisher : Lembaga Pendidikan dan Penelitian Manggala Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62335/aksioma.v2i6.1340

Abstract

This study aims to evaluate the quality of plywood production at PT. SLJ Global Tbk using the Statistical Quality Control (SQC) approach, specifically through the application of the I-MR control chart. The data used were collected from the production output during September 2021. The analysis was conducted using both the Individuals Chart (I-Chart) and the Moving Range Chart (MR-Chart), complemented by a Pareto analysis to identify the most dominant types of defects. The results indicate that the overall production process is within statistical control limits; however, there is a violation of Western Electric Rule 4, suggesting a potential shift in the production process. The most dominant types of defects identified are Press Mark, Delamination, and Overlapped, which together account for over 75% of all detected defects. These findings highlight the need for targeted improvements in these areas to enhance product quality. The study is limited by a short observation period and lacks a thorough investigation into the root causes of the defects. Future research is recommended over a longer period and should incorporate root cause analysis to support comprehensive quality improvement efforts.
Analisis Pengelompokan Jenis Kejahatan di Sumatera Utara Berdasarkan Pola Kejadian Tahunan Menggunakan Algoritma K-Means Clustering Sianturi, Michael Dolly; Lubis, Mery Christyn; Payana, Sandi Dwi; Putri, Alya Nabilla; Panjaitan, Hotnauli Roni Arta
AKSIOMA : Jurnal Sains Ekonomi dan Edukasi Vol. 2 No. 6 (2025): AKSIOMA : Jurnal Sains, Ekonomi dan Edukasi
Publisher : Lembaga Pendidikan dan Penelitian Manggala Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62335/aksioma.v2i6.1366

Abstract

This study aims to cluster various types of crimes occurring in North Sumatra Province based on annual incident patterns using the K-Means clustering algorithm. The data utilized are secondary data obtained from the Central Bureau of Statistics (BPS), comprising 34 types of crimes recorded from 2007 to 2021. Prior to clustering, data were normalized using the Z-score standardization method to ensure uniform scaling across variables. The optimal number of clusters was determined using the Elbow Method and Silhouette Plot. The analysis results indicate that four clusters (k = 4) provide the best balance between model complexity and clustering quality. Each cluster reveals distinct crime patterns in terms of frequency and trend stability over the years. The clustering results offer a clearer understanding of crime characteristics in the region and can serve as a foundation for more targeted policy-making, such as resource allocation for law enforcement and data-driven crime prevention strategies. This study demonstrates that data mining approaches, particularly the K-Means algorithm, can significantly contribute to a systematic and comprehensive understanding of crime patterns.