Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOURNAL OF APPLIED INFORMATICS AND COMPUTING

Utilization of Machine Learning for Predicting Corrosion Inhibition by Quinoxaline Compounds Fadil, Muhamad; Akrom, Muhamad; Herowati, Wise
Journal of Applied Informatics and Computing Vol. 9 No. 1 (2025): February 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i1.8894

Abstract

Corrosion is a significant issue in both industrial and academic sectors, with widespread negative impacts on various aspects, including economics and safety. To address this problem, the use of corrosion inhibitors has proven effective. This study explores the application of Machine Learning (ML) methods based on Quantitative Structure-Properties Relationship (QSPR) to develop a predictive model for the efficiency of quinoxaline compounds as corrosion inhibitors. By conducting a comparative analysis among three algorithms: AdaBoost Regressor (ADB), Gradient Boosting Regressor (GBR), and Extreme Gradient Boosting Regressor (XGBR), and optimizing parameters through hyperparameter tuning using Grid Search and Random Search, this research demonstrates that the XGBR model yields the most superior prediction results. The XGBR optimized with hyperparameter tuning using Grid Search achieved the highest R² value of 0.970 and showed the lowest RMSE, MSE, MAD, and MAPE values of 0.368, 0.135, 0.119, and 0.273, respectively, indicating high predictive accuracy. These results are expected to contribute to the development of more effective methods for identifying corrosion inhibitor candidates.