Claim Missing Document
Check
Articles

Found 5 Documents
Search

OPTIMASI PENGELOMPOKAN PROVINSI BERDASARKAN INDIKATOR SDGs MENGGUNAKAN K-MEANS DAN ANALISIS FEATURE IMPORTANCE Salsabila, Salsabila; Anggraini Susanti, Leni
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 6 No. 1 (2025): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v6i1.874

Abstract

This study clusters Indonesian provinces based on the indicators of adequate housing using the K-Means method. The four key indicators analyzed are access to clean water (X1), sanitation (X2), floor area per capita (X3), and building resilience (X4). The K-Means algorithm is applied to group the provinces based on their proximity to centroids calculated from each province's data. The clustering results in four groups with distinct characteristics, each requiring data-driven interventions to improve housing quality. Additionally, feature importance techniques are used to identify the factors most influential in the clustering process. The analysis reveals that building resilience (X4) and floor area per capita (X3) are the most important indicators in the clustering, while access to clean water (X1) is more homogeneous across provinces. Based on these findings, policy recommendations focus on improving building resilience in provinces with lower X4 scores, as well as enhancing access to clean water and sanitation in areas with challenges in X1 and X2. This K-Means and feature importance-based approach can be used to formulate more effective and sustainable policies to achieve the SDGs in Indonesia.
Analisis Faktor Yang Mempengaruhi Penggunaan Mobile-Banking Pada Mahasiswa di Bali: Pendekatan Theory Acceptance Model (TAM) Fauziah, Laily; Leni Anggraini Susanti; Upayana Wiguna Eka Saputra
EKOMA : Jurnal Ekonomi, Manajemen, Akuntansi Vol. 4 No. 4: Mei 2025
Publisher : CV. Ulil Albab Corp

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56799/ekoma.v4i4.9610

Abstract

Perkembangan teknologi dalam industri perbankan berkembang dengan pesat. Setiap bank menyediakan sistem yang lebih baik dengan mengedepankan efisiensi dan efektifitas bagi nasabah, yaitu salah satunya dengan menyediakan layanan mobile banking (m-banking). Banyaknya jumlah mahasiswa Generasi Z di Indonesia menjadi peluang bagi setiap bank untuk memperkenalkan mobile banking yang dapat menggiring mereka untuk menggunakannya. Penelitian ini bertujuan untuk menganalisa faktor yang mempengaruhi penggunaan mobile banking pada mahasiswa di Bali dengan pendekatan Theory Acceptance Model (TAM). Metode penelitian ini bersifat kuantitatif, pengumpulan data dilakukan dengan menyebarkan kuisioner secara online kepada 100 responden yaitu mahasiswa di Bali. Data yang diperoleh kemudian diolah menggunakan Python. Hasil dari penelitian ini yaitu faktor Compatibility with Lifestyle dan faktor Social Influence memiliki pengaruh signifikan terhadap Intention to Use mobile banking pada mahasiswa di Bali. Sementara Perceive Usefulness, Perceived Ease of Use, Trust tidak menunjukkan pengaruh yang signifikan terhadap Intention to Use mobile banking pada mahasiswa di Bali. Dengan Hasil ini maka memberikan implikasi yang sangat penting bagi perbankan dalam merancang layanan mobile banking.
Deep Learning Image Classification Rontgen Dada pada Kasus Covid-19 Menggunakan Algoritma Convolutional Neural Network Susanti, Leni Anggraini; Soleh, Agus Mohamad; Sartono, Bagus
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 5: Oktober 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107142

Abstract

Penelitian ini mengusulkan penggunaan Convolutional Neural Network (CNN) dengan arsitektur VGGNet-19 dan ResNet-50 untuk diagnosis COVID-19 melalui analisis citra rontgen dada. Modifikasi dilakukan dengan membandingkan nilai regularisasi dropout 50% dan 80% untuk kedua arsitektur dan mengubah jumlah lapisan klasfikasi menjadi 4 kelas. Selanjutnya, kinerja model dibandingkan berdasarkan ukuran dataset. Dataset terdiri dari 21165 citra, dengan pembagian 10% sebagai data uji dan 90% data dibagi menjadi data latih (80%) dan data validasi (20%). Kinerja model dievaluasi menggunakan metode validasi silang berulang 5 kali lipat. Proses pelatihan menggunakan learning rate 0.0001, optimasi stochastic gradient descent (SGD), dan sepuluh iterasi. Hasil penelitian menunjukkan bahwa penambahan lapisan dropout dengan peluang 50% untuk kedua arsitektur secara efektif mengatasi overfitting dan meningkatkan performa model. Ditemukan bahwa kinerja yang lebih baik dicapai pada ukuran kumpulan data lebih besar dan memberikan peningkatan signifikan pada kinerja model. Hasil klasifikasi menunjukkan arsitektur ResNet-50 mencapai akurasi rata-rata 94.4%, recall rata-rata 94.1%, presisi rata-rata 95.5%, spesifisitas rata-rata 97% dan F1-score rata-rata 94.8%. Sedangkan arsitektur VGGNet-19 mencapai akurasi rata-rata 91%, recall rata-rata 89%, presisi rata-rata 95.0%, spesifisitas rata-rata 96.8% dan F1-score rata-rata 92.7%. Pemanfaatan model ini dapat membantu mengidentifikasi penyebab kematian pasien dan memberikan informasi yang berharga bagi pengambilan keputusan medis dan epidemiologi.   Abstract This research proposes using a Convolutional Neural Network (CNN) with VGGNet-19 and ResNet-50 architectures for COVID-19 diagnosis through chest X-ray image analysis. Modifications were made by comparing the dropout regularization values of 50% and 80% for both architectures and altering the number of classification layers to 4 classes. Furthermore, the model's performance was compared based on dataset size. The dataset comprised 21,165 images, with a division of 10% for testing and 90% divided into training data (80%) and validation data (20%). The model's performance was evaluated using the 5-fold repeat cross-validation method. The training process employed a learning rate of 0.0001, stochastic gradient descent (SGD) optimization, and ten iterations. The study's results indicate that adding dropout layers with a 50% probability for both architectures effectively addressed overfitting and improved the model's performance. It was found that better performance was achieved with larger dataset sizes. The classification results indicate the ResNet-50 architecture achieved an average accuracy of 94.4%, average recall of 94.1%, average precision of 95.5%, average specificity of 97%, and average F1-score of 94.8%. Meanwhile, the VGGNet-19 architecture achieved an average accuracy of 91%, an average recall of 89%, average precision of 95.0%, average specificity of 96.8%, and an average F1-score of 92.7%. Utilizing these models can assist in identifying the causes of patient mortality and offer valuable information for medical and epidemiological decision-making.
PENGUJIAN KUALITAS WEBSITE DINAS KEPENDUDUKAN DAN PENCATATAN SIPIL (DUKCAPIL) KOTA DENPASAR BALI MENGGUNAKAN METODE SYSTEM USABILITY SCALE (SUS) I Gede Sugita Aryandana; Leni Anggraini Susanti; Putu Eka Suardana; Putu Virgananta Nugraha
Jurnal Teknologi Informasi dan Komputer Vol. 11 No. 1 (2025): JUTIK : Jurnal Teknologi Informasi dan Komputer, Edisi April 2025
Publisher : LPPM Universitas Dhyana Pura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36002/jutik.v11i1.3747

Abstract

Websites play a crucial role in providing efficient digital information and services across various sectors, including the government sector. In this sector, an optimal website is a key factor in enhancing public service efficiency, particularly in facilitating public administration and ensuring that population services are conducted more effectively and responsively to meet society's needs. The Civil Registry and Population Office (DUKCAPIL) of Denpasar City is a public service agency that operates an official website at taringdukcapil.denpasarkota.go.id. This website serves as a platform for providing information on public administration and population services. However, its information delivery is still suboptimal, with issues such as user-unfriendly navigation, infrequent information updates, and difficult access to older news content. As a result, users struggle to obtain the necessary information. To assess the quality of the DUKCAPIL website, quality evaluation was conducted using System Usability Scale (SUS) method, which measures usability based on five key dimensions: Easy to Use, User Competence, Efficiency, System Reliability, and Design. The evaluation was carried out in Denpasar City using questionnaires and a random sampling method. Based on the assessment, the DUKCAPIL Denpasar City website was classified as grade F with a "WORST IMAGINABLE" rating, achieving an average score of 26.13.
Forecasting Tourist Arrivals in Bali: A Grid Search-Tuned Comparative Study of Random Forest, XGBoost, and a Hybrid RF-XGBoost Model Waciko, Kadek Jemmy; Susanti, Leni Anggraini; Muayyad, Muayyad; Fakhrurozi, Rifqi Nur
Inferensi Vol 8, No 3 (2025)
Publisher : Department of Statistics ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j27213862.v8i3.23334

Abstract

Tourism planning, infrastructure growth, and economic stability. This study presents an extensive comparative evaluation of Random Forest (RF), Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM), and a novel Hybrid RF-XGBoost model in the prediction of monthly international tourist arrivals. A full time series dataset of a ten-year period (2014–2024) from the Central Bureau of Statistics of Bali was used for training and testing the models. Hyperparameter optimization using Grid Search with cross-validation (Grid Search CV) was used for all the machine learning models to obtain best predictive performance. Two robust metrics, Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE), were used to assess forecasting accuracy. Results show that the Random Forest model outperforms all competitors with lowest RMSE (41,772.68) and MAPE (6.30%), indicating high forecasting precision and robustness, especially during structural breaks such as the COVID-19 pandemic. The hybrid model also performs well, with LSTM indicating higher error rates, illustrating its shortcomings on small-to-medium-scale tourism time series. Besides, the study provides six-month ahead predictions (January–June 2025) with 95% prediction intervals, showing an ongoing trend of recovery. The findings affirm the superiority of bagging-based ensemble methods over polynomial-based methods in capturing nonlinearity, seasonality, and exogenous shocks in tourist demand. The study plugs the growing amount of data-driven tourism analytics by offering a reproducible, high-precision forecasting model for developing countries and seasonally driven destinations.