Claim Missing Document
Check
Articles

Found 2 Documents
Search

THE APPLICATION OF THE ARTIFICIAL NEURAL NETWORK (ANN) METHOD FOR FORECASTING THE SOUTHERN OSCILATION INDEX (SOI) Fathia Syahla Az Zahra; Bagus Sumargo; Siregar, Dania; Auria Yusrin Fathya
Jurnal Statistika dan Aplikasinya Vol. 8 No. 2 (2024): Jurnal Statistika dan Aplikasinya
Publisher : LPPM Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21009/JSA.08205

Abstract

Indonesia's seasons are influenced by global phenomena such as ENSO. This phenomenon affects rainfall intensity in Indonesia through its two main phases: El Nino and La Nina. One method to detect these events is by analyzing the Southern Oscillation Index (SOI). A highly accurate SOI forecasting model is critical for both short-term and long-term development planning, particularly in anticipating future extreme seasons. One of the methods used for forecasting is the Artificial Neural Network (ANN). This study aims to develop an ANN model capable of predicting the SOI index. Based on forecasting using training data, the optimal model architecture identified is 12-7-1, which achieved the smallest MSE value of 0.0095 and a MAPE of 17.6851. With an error rate below 20%, the 12-7-1 architecture demonstrates strong forecasting capabilities. The study forecasts the SOI index for the next 12 months, indicating a trend from negative values at the beginning of the year to more positive values toward the year's end.
PELATIHAN ANALISIS STATISTIK MENGGUNAKAN WEBSITE INTERAKTIF UNTUK MENDUKUNG PENGAMBILAN KEPUTUSAN BERBASIS DATA PENDIDIKAN BAGI GURU SMA MATEMATIKA DI KABUPATEN SUKABUMI Siregar, Dania; Suyono; Vera Maya Santi; Auria Yusrin Fathya; Sinta Rahmadani; Jaisy Aulia; Maulida Audia Firdaus
Prosiding Seminar Nasional Pengabdian Kepada Masyarakat Vol. 6 No. 1 (2025): PROSIDING SEMINAR NASIONAL PENGABDIAN KEPADA MASYARAKAT - SNPPM2025
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tantangan utama dalam pengambilan keputusan pendidikan adalah keterbatasan literasi statistik dan keterampilan guru dalam mengolah data, terutama melalui teknologi interaktif. Hal ini terlihat dari kuesioner pra-pelatihan, di mana sebagian besar guru menyatakan keraguan atau ketidaksetujuan terhadap pengetahuan mereka, dan mayoritas belum pernah menggunakan situs web interaktif untuk analisis statistik. Program layanan masyarakat ini bertujuan untuk meningkatkan literasi statistik guru melalui pelatihan analisis data menggunakan situs web interaktif berbasis R-Shiny. Pelatihan dilaksanakan pada 13 Agustus 2025, dengan peserta terdiri dari guru matematika SMA di Kabupaten Sukabumi, bekerja sama dengan MGMP Matematika SMA Sukabumi sebagai mitra layanan masyarakat. Materi pelatihan mencakup statistik deskriptif, analisis inferensial, pengujian hipotesis, dan regresi. Evaluasi pasca-pelatihan menunjukkan peningkatan yang signifikan: lebih dari 80% peserta setuju atau sangat setuju bahwa materi pelatihan sistematis, mudah dipahami, dan relevan, serta aplikasi tersebut mudah diakses dan ramah pengguna. Selain itu, 75% peserta sangat setuju bahwa mereka memperoleh pengetahuan baru yang berguna untuk pengambilan keputusan berbasis data dalam pendidikan. Kesimpulannya, pelatihan berbasis teknologi interaktif secara efektif meningkatkan kompetensi guru, memperkuat motivasi mereka, dan menumbuhkan budaya pengambilan keputusan berbasis data di sekolah. Translated with DeepL.com (free version) Abstract The main challenge in educational decision-making is the limited statistical literacy and skills among teachers in processing data, particularly through interactive technology. This was evident from the pre-training questionnaire, in which most teachers expressed doubt or disagreement about their knowledge, and the majority had never used an interactive website for statistical analysis. This community service program aimed to enhance teachers’ statistical literacy through training in data analysis using an R-Shiny-based interactive website. The training was conducted on August 13, 2025, with participants consisting of senior high school mathematics teachers in Sukabumi Regency, in collaboration with the Sukabumi Senior High School Mathematics MGMP as the community service partner. The training materials covered descriptive statistics, inferential analysis, hypothesis testing, and regression. Post-training evaluation showed a significant improvement: more than 80% of participants agreed or strongly agreed that the materials were systematic, easy to understand, and relevant, and that the application was accessible and user-friendly. Furthermore, 75% of participants strongly agreed that they gained new knowledge useful for data-driven decision-making in education. In conclusion, interactive technology-based training effectively improved teachers’ competence, strengthened their motivation, and fostered a data-driven decision-making culture in schools.