Claim Missing Document
Check
Articles

Found 3 Documents
Search

PENGARUH FAKTOR LINGKUNGAN TERHADAP KESEHATAN IBU DAN BAYI SAAT MELAHIRKAN Kusumawati, Prima Dewi; Deivita, Yan; Winarningsih, Rahayu Arum; Permatananda, Pande Ayu Naya Kasih; Maidelwita, Yani
PREPOTIF : JURNAL KESEHATAN MASYARAKAT Vol. 9 No. 1 (2025): APRIL 2025
Publisher : Universitas Pahlawan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/prepotif.v9i1.43582

Abstract

Lingkungan memiliki pengaruh yang signifikan terhadap kesehatan ibu dan bayi, terutama selama masa kehamilan hingga proses melahirkan. Artikel ini bertujuan untuk menganalisis hubungan antara faktor lingkungan dengan kesehatan ibu dan bayi menggunakan pendekatan kualitatif. Penelitian ini mengkaji literatur yang relevan untuk mengidentifikasi tema utama terkait dampak sanitasi, polusi udara, akses terhadap fasilitas kesehatan, serta kualitas lingkungan binaan terhadap hasil kehamilan. Hasil analisis menunjukkan bahwa sanitasi yang buruk, seperti kurangnya akses air bersih dan pengelolaan limbah yang tidak memadai, meningkatkan risiko infeksi yang dapat menyebabkan komplikasi kehamilan. Polusi udara, terutama paparan partikel halus (PM2.5), dikaitkan dengan kelahiran prematur dan berat badan lahir rendah. Selain itu, keterbatasan akses ke fasilitas kesehatan di daerah terpencil menghambat layanan prenatal yang esensial, sehingga meningkatkan risiko komplikasi saat melahirkan. Kualitas lingkungan binaan juga memainkan peran penting; rumah dengan ventilasi buruk dan minimnya ruang hijau dapat memengaruhi kesehatan fisik dan mental ibu hamil. Faktor sosial-ekonomi memperburuk dampak lingkungan negatif ini, terutama pada kelompok masyarakat berpenghasilan rendah. Artikel ini menekankan pentingnya intervensi berbasis kebijakan untuk meningkatkan sanitasi, mengurangi polusi udara, memperluas akses layanan kesehatan, dan menciptakan lingkungan binaan yang mendukung kesehatan ibu dan bayi. Dengan demikian, upaya multidisiplin diperlukan untuk memastikan hasil kehamilan yang lebih baik dan menurunkan angka morbiditas serta mortalitas ibu dan bayi.
Hubungan Pengetahuan dan Sikap Remaja Putri terhadap Kepatuhan Mengonsumsi Tablet Fe Layuk, Nurrahma; Deivita, Yan; Siregar, Asni Annisa; Saraha, Rosida Hi; Putri, Anira Sukma Sukardi
JIDAN Jurnal Ilmiah Bidan Vol 12 No 2 (2025): Vol 12 No 2 (Edisi Januari - Juni 2025)
Publisher : POLTEKKES KEMENKES MANADO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47718/jib.v12i2.2582

Abstract

Background: Anemia is a condition when the concentration of red blood cells is below normal. Adolescent girls are susceptible to anemia due to inadequate nutritional intake, as well as physiological factors such as menstruation which causes adolescent girls to lose about 1.3 mg of blood per day, the possibility of pregnancy and abortion. Objective: The purpose of this study was to determine the relationship between knowledge and attitudes of adolescent girls regarding compliance with Fe tablet consumption. Methods: The research method used a descriptive analytical design with a cross-sectional approach. The population in this study were all adolescent girls at SMA IT and the research sample was 30 adolescent girls based on a very small population, so the sample of 30 became large or more than 75% of the population. Result: The results showed that 12 respondents (40%) had a good level of knowledge, 10 respondents (33.3%) with a sufficient level of knowledge and 8 respondents (26.7%) with a low level of knowledge. The proportion of adolescents who were obedient in consuming Fe tablets was more dominant in the good knowledge group (40%), while in the low knowledge group it was only 13%. Chi-Square test analysis using SPSS version 27 with a result of P <0.05 showed a relationship between knowledge and attitudes of adolescent girls in compliance with consuming Fe tablets. The results of the Odds Ratio (OR) analysis were 10.286, indicating that the chance of compliance in consuming Fe tablets was 10 times higher compared to respondents who commented negatively. Conclusion: The conclusion of the study showed that the level of knowledge and attitude of adolescent girls was significantly related to compliance in consuming Fe tablets. Further research is suggested to explore forms of educational interventions such as using educational video media to improve knowledge and attitudes in consuming Fe tablets.
Accuracy of A Deep Learning Model in Retinal Imaging Analysis for The Early Detection of Diabetic Retinopathy in A Southeast Asian Population: A Diagnostic Validation Study Deivita, Yan; Bahmid Hasbullah; Aby Riestanti; Lita Umiputriani Gai; Nicholas Renaldo
International Journal of Public Health Excellence (IJPHE) Vol. 5 No. 1 (2025): June-December
Publisher : PT Inovasi Pratama Internasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55299/ijphe.v5i1.1625

Abstract

Background: Diabetic retinopathy (DR) represents a leading cause of preventable blindness in Southeast Asia, where diabetes prevalence continues rising dramatically. Deep learning models show promising diagnostic accuracy for DR detection, yet validation in Southeast Asian populations remains limited. Objective: To evaluate the accuracy and clinical applicability of a deep learning model for early DR detection through comprehensive qualitative analysis in Indonesian healthcare settings. Methods: A mixed-methods diagnostic validation study was conducted across three Indonesian provinces from January 2023 to December 2024. The study employed a convolutional neural network-based deep learning model trained on 15,000 retinal images for DR classification. Qualitative data collection included semi-structured interviews with 30 ophthalmologists, 20 primary care physicians, 15 healthcare administrators, and 40 patients. Thematic analysis explored stakeholder perspectives on diagnostic accuracy, implementation barriers, and clinical integration potential. Results: The deep learning model demonstrated 89.3% accuracy (95% CI: 86.7-92.1%), 91.7% sensitivity, and 87.1% specificity for detecting referable DR. Qualitative analysis revealed high stakeholder acceptance (87.5% patient trust, 90.0% physician interest) despite implementation concerns. Key themes included diagnostic accuracy validation needs, workflow integration challenges, infrastructure requirements, and cost-effectiveness potential. Primary barriers included image quality standardization, internet connectivity limitations, and regulatory approval processes. Conclusion: Deep learning models demonstrate promising diagnostic performance for DR screening in Southeast Asian populations, with strong stakeholder support for implementation. However, successful deployment requires addressing infrastructure limitations, regulatory frameworks, and clinician training needs. These findings support the potential for AI-enhanced DR screening to improve early detection outcomes in resource-constrained healthcare systems across Southeast Asia.