Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analysis of Distance Learning Technology Impact on Accessibility and Educational Effectiveness: Analisis Teknologi Pembelajaran Jarak Jauh Dampak Aksesibilitas dan Efektivitas Pendidikan Azizah, Nur; Firiza, Muhammad Daffa; Sunarya, Po Abas; Silawati, Nur
Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi Vol 3 No 2 (2025): March
Publisher : Pandawan Sejahtera Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33050/mentari.v3i2.739

Abstract

Penelitian ini dilatarbelakangi oleh meningkatnya adopsi teknologi dalam pembelajaran jarak jauh serta tantangan dalam aksesibilitas dan efektivitasnya. Tujuan penelitian ini adalah menganalisis faktor aksesibilitas, kepribadian merek, adopsi teknologi, efektivitas, dan literasi digital dalam mendukung keberhasilan pembelajaran jarak jauh. Metode yang digunakan adalah pendekatan kuantitatif dengan model persamaan struktural (SEM)berbasis SmartPLS, menggunakan data dari survei 300 responden dengan berbagai latar belakang. Hasil penelitian menunjukkan bahwa aksesibilitas dan kepribadian merek berpengaruh signifikan terhadap adopsi teknologi, yang meningkatkan efektivitas pembelajaran. Selain itu, literasi digital berperan penting dalam mengoptimalkan pengalaman belajar. Kesimpulannya, penelitian ini menegaskan bahwa aksesibilitas dan literasi digital adalah faktor kunci dalam meningkatkan efektivitas pembelajaran jarak jauh, sehingga rekomendasi diberikan kepada pengembang teknologi dan pembuat kebijakan untuk meningkatkan aksesibilitas serta dukungan terhadap literasi digital.
HibahQu Education Monitoring Platform Based on Human-Centric Orange Technology Laravel 12 Vue.js Rahardja, Untung; Sulistyo, Lod; Safarina, Dwi; Rapidan Kusuma, Muhamad; Silawati, Nur; Nanle, Zeze; A, Muhammad Devan
ADI Bisnis Digital Interdisiplin Jurnal Vol 6 No 2 (2025): ADI Bisnis Digital Interdisiplin (ABDI Jurnal)
Publisher : ADI Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34306/abdi.v6i2.1348

Abstract

The digital transformation of grant management in higher education is essential to enhance transparency, efficiency, and accountability in research and community service programs. However, many institutions still depend on frag mented monitoring mechanisms, limited real-time information access, and systems that are not fully user oriented, leading to in effective supervision and delayed decision making. This study aims to design and develop a higher education grant monitoring platform based on Human-Centric Orange Technology to support real-time tracking, structured reporting, and process transparency across the grant lifecycle. The research adopts a system development approach combined with qualitative analysis, including requirement analysis, system design, implementation, and user evaluation through interviews and direct observations involving academic and administrative stakeholders. This approach enables a comprehensive understanding of user needs, usability considerations, and system relevance within the institutional grant management context. The findings indicate that the proposed platform improves monitoring effectiveness through real-time grant status visualization, transparent information access, and integrated reporting features, while enhancing user experience through an intuitive, role based, and human centric interface. The study concludes that implementing a Human-Centric Orange Technology based monitoring platform can strengthen grant governance, improve transparency, and optimize administrative efficiency in higher education institutions in a user oriented manner.
Integrating AI-Driven Predictive Analytics and Smart Contracts for Data-Driven Supply Chain Risk Management Pujiati, Tri; Kamil, Mustofa; Silawati, Nur; Ikhsan, Ramiro Santiago
ADI Journal on Recent Innovation Vol. 7 No. 1 (2025): September
Publisher : ADI Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34306/ajri.v7i1.1318

Abstract

Global supply chains face increasing uncertainty, while traditional risk management often lacks adaptability. This study investigates how AI driven predictive analytics and smart contracts enhance resilience, using mixed methods with case studies and big data analysis. A mixed method approach was employed, combining big data analytics from supply chain networks with machine learning models for predictive forecasting, supported by case studies from multinational manufacturing and logistics companies as well as secondary data from industry reports. The findings reveal that AI driven predictive models significantly improve demand forecasting accuracy, identify potential disruptions earlier, and enhance supplier risk assessment compared to conventional approaches, while integrating data from IoT enabled devices provides real time visibility across logistics operations. Overall, AI powered predictive analytics demonstrates substantial potential in transforming risk management within global supply chains by enabling proactive strategies and resilience, allowing organizations to reduce vulnerabilities, optimize performance, and strengthen competitiveness in dynamic markets, with future research suggested to explore the integration of blockchain for transparency and ethical governance in supply chain ecosystems.