Claim Missing Document
Check
Articles

Found 3 Documents
Search

Perancangan Aplikasi Pendataan Stok Opname Gudang Berbasis Web Menggunakan Metode Waterfall pada Kopiluvium Yuniarti, Dian Tri; Alfitra, Ramadhani; Prasetya, Rivaldi Nicho; Saprudin
OKTAL : Jurnal Ilmu Komputer dan Sains Vol 4 No 05 (2025): OKTAL : Jurnal Ilmu Komputer Dan Sains
Publisher : CV. Multi Kreasi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study discusses the design of a web-based stock opname recording application for Kopiluvium using the Waterfall method. The application is designed to address the challenges of manual stock recording, which is prone to errors, slow, and inefficient. The Waterfall method is implemented through the stages of requirements analysis, system design, implementation, testing, and maintenance. Tools used include PHP, MySQL, and UML diagrams (Use Case Diagram, Activity Diagram, ERD). The system includes multi-level login (admin, staff, employee), item data input, stock in/out recording, automatic reports, and role-based access. Testing using the blackbox method shows that the system functions according to user needs. This study demonstrates that a web-based system can improve warehouse stock recording efficiency and support faster, more accurate managerial decision-making.
ANALISIS PERAN TEKNOLOGI INFORMASI DAN KECERDASAN BUATAN DALAM MEMPERSIAPKAN SISWA SMK PKP 1 JAKARTA MENGHADAPI DUNIA KERJA Ardana, I Made Sugi; Suhada, Jiyan; Yuniarti, Dian Tri; Rizky, Mochammad
JUTECH : Journal Education and Technology Vol 6, No 2 (2025): JUTECH DESEMBER
Publisher : STKIP Persada Khatulistiwa Sintang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31932/jutech.v6i2.5045

Abstract

Penelitian ini bertujuan untuk menganalisis sejauh mana pemanfaatan teknologi informasi dan pemahaman kecerdasan buatan (AI) berkontribusi terhadap kesiapan siswa SMK PKP 1 Jakarta dalam menghadapi dunia kerja. Metode penelitian yang digunakan adalah deskriptif kuantitatif dengan teknik survei terhadap siswa jurusan Teknik Komputer dan Jaringan (TKJ). Instrumen yang digunakan berupa kuesioner tertutup dan terbuka. Hasil pengolahan data menunjukkan bahwa 76% responden menyatakan penggunaan teknologi informasi di sekolah membantu mereka memahami materi secara lebih efisien. Sebanyak 64% siswa menyatakan pernah menggunakan aplikasi berbasis AI, namun hanya 42% yang benar-benar memahami prinsip dasarnya. Uji korelasi Pearson menunjukkan nilai r = 0,712 (p < 0,05) antara pemahaman AI dengan kesiapan menghadapi dunia kerja, yang menunjukkan hubungan positif kuat dan signifikan. Analisis regresi sederhana juga menunjukkan bahwa variabel TI dan AI berkontribusi sebesar 52,6% terhadap variabel kesiapan kerja. Hal ini menandakan bahwa semakin baik integrasi TI dan pemahaman AI dalam proses pembelajaran, semakin tinggi pula tingkat kesiapan siswa menghadapi tantangan profesional di era digital.
Analisis Penerapan Metode WASPAS untuk Penentuan Pola Belajar Mahasiswa Berdasarkan Gaya Belajar Ester, Ria; Yuniarti, Dian Tri; Valentina, Putri Eka; Kusumah Putra, Faris Maulana
JURNAL FASILKOM Vol. 15 No. 3 (2025): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Higher education in the digital era requires learning approaches that are able to adapt to individual student characteristics, including differences in learning styles. This study aims to develop a model for assessing students’ learning patterns and to provide more personalized learning recommendations using the Weighted Aggregated Sum Product Assessment (WASPAS) method. The data used are secondary data obtained from 1,000 students with seven learning criteria, namely academic score, course participation, attendance rate, physical activity, emotional engagement, device usage, and feedback score. The WASPAS method is applied through two main stages, namely the calculation of the Weighted Sum Model (WSM) and the Weighted Product Model (WPM), which are then aggregated to produce a composite WASPAS score for each student. Manual calculations are demonstrated using five student samples, while computations for the entire dataset are performed using Python in the Jupyter Notebook environment. The results show that students’ WASPAS scores range from 0.2815 to 0.9914 with a distribution that tends to be normal. Most students fall into the “fair” to “very good” learning pattern categories, while a small proportion are classified as “very high” and “requiring special attention.” Analysis based on visual, auditory, and kinesthetic learning styles indicates differences in average WASPAS scores across groups, supporting the effectiveness of the WASPAS method in integrating multiple learning criteria simultaneously. These findings demonstrate that WASPAS can be used as a decision support tool to map student learning profiles and assist in designing more adaptive, targeted, and personalized learning strategies in higher education