Putri Khofifah Rambe
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Studi Literatur : Metode Analisis Sensitivitas pada Pemrograman Linear dan Aplikasinya dalam Optimisasi Produksi Muhammad Farhan; Luthvia Aprilliza Utami; Putri Khofifah Rambe; Siti Salamah Br Ginting
Bilangan : Jurnal Ilmiah Matematika, Kebumian dan Angkasa Vol. 3 No. 3 (2025): Juni: Bilangan : Jurnal Ilmiah Matematika, Kebumian dan Angkasa
Publisher : Asosiasi Riset Ilmu Matematika dan Sains Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62383/bilangan.v3i3.610

Abstract

Sensitivity analysis is an important method in linear programming used to evaluate the impact of parameter changes on optimal solutions in production optimization. This study aims to identify and analyze various sensitivity analysis methods applied in previous studies. Through a systematic literature review approach, the research finds that sensitivity analysis provides valuable insights into solution stability and the effects of parameter changes on optimal outcomes. The findings indicate that this method can support better strategic decision-making in industrial contexts. The results of this research are expected to offer practical recommendations for practitioners to enhance production efficiency and effectiveness.
Menerapkan Algoritma Pemrograman untuk Menyelesaikan Soal Trigonometri dalam Perangkat Lunak Maple Putri Khofifah Rambe; Yahfizham Yahfizham
JURNAL RISET RUMPUN MATEMATIKA DAN ILMU PENGETAHUAN ALAM Vol. 3 No. 1 (2024): April : Jurnal Riset Rumpun Matematika dan Ilmu Pengetahuan Alam
Publisher : Pusat riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/jurrimipa.v3i1.2463

Abstract

Thel purposel of thils relselarch ils to ilmprovel thel elffilcilelncy of solvilng trilgonomeltrilc problelms by applyilng programmilng algorilthms iln Maplel softwarel. Iln thel contelxt of trilgonomeltry, you willl elncountelr complelx problelms such as workilng wilth trilgonomeltrilc functilons, solvilng trilgonomeltrilc elquatilons, and othelr trilgonomeltrilc analysils. Pelrformilng trilgonomeltrilc calculatilons iln Maplel softwarel usels an algorilthmilc programmilng approach to crelatel fastelr and morel accuratel solutilons. Thils melthod ilnvolvels delsilgnilng algorilthms that arel useld to handlel varilous trilgonomeltrilc casels. Elxpelrilmelnts welrel conducteld to melasurel thel elxelcutilon speleld and accuracy of thel relsultilng solutilons. Thel relsults show that thel applilcatilon of algorilthmilc programmilng to Maplel softwarel silgnilfilcantly spelelds up thel solutilon of trilgonomeltrilc problelms whillel mailntailnilng a hilgh lelvell of accuracy.