Mendikbudristek pada tahun 2022 menjadikan 38 bahasa daerah menjadi objek revitalisasi, salah satunya yaitu bahasa Sunda. Hal tersebut dikarenakan sebagian besar bahasa daerah di Indonesia kondisinya terancam punah dan kritis. Hilangnya bahasa daerah juga mengancam keberadaan aksara lokal yang menjadi bagian integral dari warisan budaya. Dalam upaya memperkenalkan serta mendukung revitalisasi di bidang kebahasaan, pengembangan aplikasi media pembelajaran berbasis mobile dapat menjadi solusi yang efektif. Hal ini didasarkan bahwa perangkat smartphone memiliki pengguna yang luas di kalangan masyarakat. Penelitian ini bertujuan untuk merancang dan mengimplementasikan model Convolutional Neural Network (CNN) untuk pengenalan aksara Sunda pada perangkat berbasis mobile. Model CNN diterapkan pada fitur belajar menulis untuk mengenali tulisan tangan aksara Sunda dan memberikan feedback kepada pengguna. Penelitian ini menggunakan metode Machine Learning Lifecycle (MLLC) dimana tahapan yang dilakukan meliputi problem definition, data, model, dan production system. Penelitian dimulai dengan pembuatan dataset tulisan tangan digital, yang kemudian digunakan untuk melatih model klasifikasi menggunakan arsitektur CNN VGG-16. Dataset yang berhasil dibuat sebanyak 7500 gambar yang terdiri dari aksara Sunda swara, ngalagena, dan ngalagena serapan. Model yang dihasilkan dari proses pelatihan dengan total 10 epoch memperoleh akurasi sebesar 99%, sementara pada data testing memperoleh akurasi rata-rata sebesar 83%. Pada tahap akhir pengujian, model diimplementasikan pada prototype aplikasi pengenalan aksara Sunda berbasis mobile dan dapat dengan baik mengklasifikasi aksara Sunda. Hasil dari penelitian ini yaitu berupa model pengenalan aksara Sunda yang dapat diterapkan pada aplikasi berbasis mobile. Melalui pembuatan model dan prototype aplikasi pengenalan aksara Sunda, penelitian ini ikut berkontribusi pada digitalisasi aksara Sunda serta menyediakan landasan untuk pengembangan dan penelitian lanjutan dalam penerapan CNN pada aplikasi berbasis mobile. Abstract In 2022, the Minister of Education, Culture, Research and Technology made 38 regional languages the object of revitalization, one of which is Sundanese. This is because most regional languages in Indonesia are endangered and critical. The loss of regional languages also threatens the existence of local scripts, which are an integral part of cultural heritage. To introduce and support revitalization in the language field, the development of mobile-based learning media applications can be an effective solution. This is based on the fact that smartphone devices have a wide user base in society. This study aims to design and implement a Convolutional Neural Network (CNN) model for Sundanese script recognition on mobile-based devices. The CNN model is applied to the learning-to-write feature to recognize Sundanese handwriting and provide user feedback. This study uses the Machine Learning Lifecycle (MLLC) method, where the stages include problem definition, data, models, and production systems. The study began with creating a digital handwriting dataset, which was then used to train a classification model using the CNN VGG-16 architecture. The successfully created dataset was 7500 images consisting of Sundanese swara, ngalagena, and ngalagena absorption scripts. The model produced from the training process with 10 epochs obtained an accuracy of 99%, while the testing data obtained an average accuracy of 83%. In the final stage of testing, the model was implemented on a mobile-based Sundanese script recognition application prototype and could classify Sundanese script well. The results of this study are in the form of a Sundanese script recognition model that is applied to a mobile-based application prototype. By creating a model and prototype of a Sundanese script recognition application, this research contributes to the digitalization of Sundanese script and provides a foundation for further development and research in the application of CNN to mobile base applications.