Claim Missing Document
Check
Articles

Found 2 Documents
Search

Identifikasi Penyakit Tanaman Berdasarkan Citra Daun Berbasis Web dengan Pendekatan Algoritma Convolutional Neural Network Sri Mulyana; Mansur AS; Angga Warjaya; Inna Muthmainnah; Said Iskandar Al Idrus; Zulfahmi Indra
SKANIKA: Sistem Komputer dan Teknik Informatika Vol 8 No 2 (2025): Jurnal SKANIKA Juli 2025
Publisher : Universitas Budi Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36080/skanika.v8i2.3573

Abstract

This research aims to develop a mustard plant disease classification system using the Convolutional Neural Network (CNN) method integrated into a web-based platform. Classification is carried out on three classes, namely Spotted Mustard Leaves, Rotten Mustard Leaves, Healthy Mustard Leaves, with the addition of the Not Mustard Leaf class as a distractor class to test the robustness of the model against images that are not included in the main classification category. The dataset used consists of 800 images, 200 images each per class. The CNN model was built with a sequential architecture consisting of several convolutions, pooling, dropout, and dense layers, and using ReLU and SoftMax activation functions in the output layer. The training process is carried out up to 100 epochs, but with the use of Early Stopping callback, the training stops at the 60th epoch, with the best performance (best epoch) achieved at the 32nd epoch. Evaluation of the model on test data showed an accuracy of 93.75%, with high precision, recall, and F1-score values in each class. The model was then implemented into a web interface so that users could upload leaf images and obtain classification results automatically. The results of this study show that CNN is effective in detecting mustard leaf disease and has the potential to be applied as a digital image-based diagnostic tool in agriculture.
Pemberdayaan Kader dan Keluarga melalui Smart Posyandu: Pendekatan Kesehatan Digital Berbasis Masyarakat Perdesaan: Pengabdian Subaedah, Sitti; Mansur AS; Andi Bahar; Ibrahim, Ibrahim; Angga Warjana; Inna Muthmainnah; Sri Mulyana
Jurnal Pengabdian Masyarakat dan Riset Pendidikan Vol. 4 No. 2 (2025): Jurnal Pengabdian Masyarakat dan Riset Pendidikan Volume 4 Nomor 2 (October 202
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jerkin.v4i2.4306

Abstract

Program pengabdian kepada masyarakat ini memperkenalkan pendekatan Smart Posyandu sebagai strategi penguatan layanan kesehatan di wilayah perdesaan melalui inovasi digital dan peningkatan kapasitas sumber daya manusia. Kegiatan dilaksanakan di Posyandu Dahlia, Dusun Amal Bhakti, Kabupaten Deli Serdang, Sumatera Utara, yang sebelumnya menghadapi permasalahan berupa pencatatan pertumbuhan anak yang masih manual, keterbatasan media edukasi, rendahnya literasi digital kader, serta menurunnya partisipasi masyarakat. Intervensi dilakukan melalui pelatihan kader, penerapan aplikasi pencatatan digital berbasis Android, serta pemanfaatan media edukasi interaktif berupa poster, leaflet, dan video animasi. Pengumpulan data dilakukan melalui observasi, pre-test dan post-test, serta evaluasi partisipatif. Hasil kegiatan menunjukkan peningkatan rata-rata kompetensi kader sebesar 28,6%, termasuk peningkatan keterampilan pencatatan digital sebesar 40%. Jumlah anak yang tercatat secara digital meningkat menjadi lebih dari 60 anak, sementara partisipasi keluarga dalam kegiatan Posyandu meningkat sekitar 20%. Temuan ini menunjukkan bahwa digitalisasi dan pendekatan partisipatif mampu meningkatkan kualitas layanan kesehatan berbasis masyarakat serta memperkuat keterlibatan keluarga. Model Smart Posyandu berpotensi direplikasi sebagai pendekatan pemberdayaan kesehatan yang berkelanjutan di wilayah perdesaan Indonesia.