Claim Missing Document
Check
Articles

Found 4 Documents
Search

RANCANG BANGUN BIDAI ORTOPEDI PINTAR BERBASIS 3D PRINTING DENGAN WIRELESS REAL-TIME MICROCLIMATE MONITOR timur, fajar; Rizkiarna, Reffany Choiru; Wardhani, Primasari Cahya; Sujiwa, Akbar; Prasetya, Bayu
Inovasi Fisika Indonesia Vol. 14 No. 2 (2025): Vol 14 No 2
Publisher : Prodi Fisika FMIPA Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/ifi.v14n2.p216-223

Abstract

Abstrak Imobilisasi ortopedi merupakan bagian penting dalam proses penyembuhan patah tulang atau fraktur. Bidai merupakan alat yang digunakan untuk proses imobilisasi patah tulang atau fraktur dan umumnya berbahan dasar gips dan fiberglass. Bidai jenis ini sering menyebabkan komplikasi kulit akibat penumpukan panas dan kelembapan di bawah permukaan bidai. Kondisi mikroklimat dengan suhu dan kelembapan tinggi dapat memicu maserasi kulit, bau tidak sedap, dan infeksi sekunder yang memerlukan intervensi medis. Penelitian ini dilakukan dengan maksud mengembangkan prototipe bidai ortopedi biofungsional berbasis 3D Printing yang dilengkapi modul sensor suhu dan kelembapan yang ditransmisikan secara wireless.  Hasil pengujian menunjukkan bahwa prototipe bidai memiliki kekuatan tekan yang lebih tinggi dibandingkan bidai gips. Uji pemantauan waktu nyata selama dua jam dilakukan pada relawan sehat dengan suhu lingkungan 25 °C menunjukkan bahwa suhu internal bidai berada pada rentang 30–31,2 °C dan kelembapan relatif 64–66%, dengan deviasi ≤1,3% terhadap alat referensi dan nilai p > 0,05 untuk seluruh titik waktu. Fluktuasi suhu dan kelembapan yang diamati mencerminkan dinamika termal fisiologis dan efektivitas ventilasi pada struktur bidai. Prototipe bidai ini menunjukkan kemajuan penting dalam perawatan ortopedi dengan meningkatkan kenyamanan pasien patah tulang, mengurangi komplikasi kulit, dan mengintegrasikan rekayasa biomedik dengan teknologi kesehatan digital.   Abstract Orthopedic immobilization plays a critical role in the healing process of bone fractures. Casts are commonly used to immobilize fractured bones and are traditionally made from materials such as plaster of Paris or fiberglass. However, these conventional casts often cause skin-related complications due to the buildup of heat and moisture beneath the surface. An enclosed microclimate with elevated temperature and humidity can lead to skin maceration, unpleasant odor, and secondary infections that require clinical intervention. The present study aims to develop a biofunctional orthopedic cast prototype fabricated via 3D printing, equipped with embedded temperature and humidity sensors capable of wireless data transmission. Mechanical testing demonstrated that the 3D-printed cast exhibited higher compressive strength compared to traditional plaster-based casts. A two-hour real-time monitoring test was performed on a healthy volunteer in a controlled environment (25 °C). The internal microclimate within the cast ranged from 30 to 31.2 °C with a relative humidity of 64–66%, showing a deviation of no more than 1.3% compared to calibrated reference instruments (p > 0.05 for all time points). The observed fluctuations in temperature and humidity reflect the physiological thermal dynamics of the skin and the effectiveness of the lattice ventilation design. Overall, the developed prototype represents a notable advancement in orthopedic care by improving patient comfort, reducing the risk of skin complications, and integrating biomedical engineering with modern digital health technologies.
PEMODELAN KOMPUTASIONAL SIFAT MEKANIK THIN FILM BERBASIS PEKTIN KULIT DURIAN Rizkiarna, Reffany Choiru; Timur, Fajar; Sujiwa, Akbar; Wardhani, Primasari Cahya
Inovasi Fisika Indonesia Vol. 14 No. 2 (2025): Vol 14 No 2
Publisher : Prodi Fisika FMIPA Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/ifi.v14n2.p209-215

Abstract

Abstrak Pektin yang diekstrak dari kulit durian merupakan salah satu bentuk pemanfaatan limbah biomassa berpotensi tinggi sebagai material ramah lingkungan, khususnya untuk aplikasi kemasan pangan biodegradable. Pada penelitian ini dilakukan simulasi numerik berbasis COMSOL Multiphysics untuk menganalisis perilaku mekanik film tipis pektin kulit durian di bawah berbagai kondisi pembebanan. Studi dilakukan dengan membangun model tiga dimensi (3D) film tipis, kemudian pemetaan tegangan von Mises, analisis distribusi tegangan, serta evaluasi nilai tegangan maksimum (peak stress), minimum, dan rata-rata. Hasil simulasi menunjukkan distribusi tegangan tidak merata di seluruh volume film, melainkan terkonsentrasi pada tepi dan sudut akibat efek geometri. Nilai peak stress berfluktuasi terhadap waktu dan cenderung meningkat pada siklus pembebanan tertentu, yang berimplikasi pada potensi inisiasi retakan di area kritis. Meskipun demikian, sebagian besar area film masih berada dalam kondisi elastis, sehingga deformasi bersifat reversibel. Analisis ini menegaskan bahwa ketahanan jangka panjang film tipis pektin dipengaruhi oleh kombinasi sifat intrinsik material, kondisi batas, serta variasi pembebanan. Temuan ini memberikan dasar penting bagi pengembangan material kemasan berbasis pektin kulit durian yang lebih andal melalui modifikasi struktur maupun penambahan aditif penguat.   Abstract Pectin extracted from durian rind represents a promising valorization of biomass waste with potential applications as an eco-friendly material, particularly for biodegradable food packaging. In this study, a COMSOL Multiphysics-based numerical simulation was conducted to investigate the mechanical behavior of durian rind pectin thin films under various loading conditions. A three-dimensional (3D) thin-film model was developed, followed by von Mises stress mapping, stress distribution analysis, and evaluation of maximum (peak stress), minimum, and average stress values. The results revealed that stress distribution was not uniform across the film volume but concentrated along the edges and corners due to geometric effects. Peak stress exhibited temporal fluctuations and tended to increase during specific loading cycles, indicating a high probability of crack initiation in critical regions. Nevertheless, the majority of the film remained within the elastic regime, allowing reversible deformation. This analysis highlights that the long-term reliability of durian pectin thin films is strongly governed by the interplay of intrinsic material properties, boundary conditions, and loading variations. The findings provide a scientific basis for further optimization of durian rind pectin films through structural modification or reinforcement additives to enhance their performance as sustainable packaging materials.
Comparison of Stress and Deformation Distribution in Steel and Cobalt Chromium Materials for Femoral Bone Implants using Computational Biomechanics Analysis hardiantati, hamizatul; Wulan, Widya Rachma; Timur, Fajar; Hasan, Nailul; Fauziyah, Nur Aini
Faraday: Journal of Fundamental Physics, Research, and Applied Science Vol. 1 No. 1 (2025): Faraday: Journal of Fundamental Physics, Research, and Applied Science
Publisher : Universitas Pembangunan Nasional "Veteran" Jawa Timur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33005/faraday.v1i1.3

Abstract

This study analyzes the mechanical performance of femoral bone implants using two types of materials, namely Alloys and Cobalt Chromium Alloys, as well as two variations in implant length (72 mm and 24 mm, and 80 mm and 20 mm). Simulation was conducted using the Finite Element Method (FEM) to evaluate mechanical parameters, such as directional deformation, equivalent stress, maximum principal stress, and minimum principal elastic strain. The analysis results show that the Cobalt Chromium Alloys material has smaller deformation compared to the Alloys, indicating better stiffness and load-bearing capacity. However, the maximum principal stress value is higher in Cobalt Chromium Alloys, indicating a greater risk of stress concentration. Meanwhile, a longer implant length shows a more even stress distribution compared to a shorter length. This study provides important insights into the influence of material and implant length on its mechanical performance, and can serve as a basis for designing optimal implants for specific medical needs
Monitoring of Raw and Treated Water Quality Based on Nitrate Parameter at Ngagel Water Treatment Plant Using Spectrophotometry Method Sudrajat, Oka Akbar; Wardhani, Primasari Cahya; Timur, Fajar; Pravitasari, Rizky; Rizkiarna, Reffany Choiru; Perwitasari, Devina Rayzy
Faraday: Journal of Fundamental Physics, Research, and Applied Science Vol. 1 No. 1 (2025): Faraday: Journal of Fundamental Physics, Research, and Applied Science
Publisher : Universitas Pembangunan Nasional "Veteran" Jawa Timur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33005/faraday.v1i1.6

Abstract

This research focuses on monitoring the water quality at the Ngagel Water Treatment Plant in Surabaya by analyzing the nitrate (NO₃⁻) content in both raw and treated water. Nitrate is a key indicator of water pollution, often originating from agricultural runoff, sewage, and industrial discharge. Samples were collected monthly from January to March 2024 at two locations: the raw water intake from the Surabaya River and the treated water output ready for distribution. Laboratory testing using spectrophotometric methods showed that nitrate levels in raw water ranged between 2.44 mg/L and 3.50 mg/L, while treated water showed a slightly lower range between 2.00 mg/L and 3.00 mg/L. These results indicate a consistent reduction in nitrate concentrations after treatment, demonstrating the efficiency of the Ngagel Water Treatment Plant’s processes. Importantly, all measured values were significantly below the maximum allowable limit of 50 mg/L, as stated in the Indonesian Ministry of Health Regulation No. 492/MENKES/PER/IV/2010. This confirms that the treated water is safe for human consumption with regard to nitrate levels. The study highlights the importance of continuous water quality monitoring to ensure public health protection and to maintain the effectiveness of water treatment facilities over time.