Claim Missing Document
Check
Articles

Found 2 Documents
Search

Solar Cell Performance Test against Load Variations Sumarno, F Gatot; Wahyono, Wahyono; Mei Hermawan, Baktiyar; Hamim Su”™udy, Ahmad; Fatowil Aulia, Nur; Khoiroh, Ikhwatinah; Surindra, Mochammad Denny
Eksergi Vol. 18 No. 2 (2022): MAY 2022
Publisher : Politeknik Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (384.172 KB) | DOI: 10.32497/eksergi.v18i2.3570

Abstract

Solar cell is a converter of light energy into electrical energy. This study aims to examine the characteristics of the solar cell to load variations. The research was conducted at the Semarang State Polytechnic Energy Conversion Lab. The solar cell used in the research of the monocrystalline solar cell type KTENG CP-520S. The research method is carried out by measuring the value of solar intensity, voltage and electric current from the solar cell, then calculating the value of the power and efficiency of the solar cell. The greater the intensity of sunlight, the better the characteristics of the solar cell with a note that the solar cell surface temperature must be stable at 250C. The results showed that the highest input power of the solar cell was 5293.69 watts at a lamp load of 115 watts at 833.6 W/m2 of radiation during sunny weather. The highest value of the output power of the solar cell is 191.52 watts when the lamp is loaded with 190 watts of radiation at 739.4 W/m2 during sunny weather. While the highest value of the load output power is 212.43 watts when the lamp is loaded with 200 watts of radiation at 724.4 W/m2 when the weather is sunny. The highest efficiency of the solar cell is 4.13% when the lamp is loaded with 200 watts of radiation at 724.4 W/m2 when the weather is sunny. And the highest value of Solar Power Plant efficiency is 4.61% at a 200 watt lamp loading at 724.4 W/m2 radiation when the weather is sunny.
Performance of Magneto Hydro Dynamic (MHD) as a Power Generation Support Tool Purwati W, Wiwik; Atmojo, Slamet Priyo; Margana, Margana; Suwarti, Suwarti; Prasetiyo, Budhi; Khoiroh, Ikhwatinah
Eksergi Vol. 18 No. 2 (2022): MAY 2022
Publisher : Politeknik Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (976.001 KB) | DOI: 10.32497/eksergi.v18i2.3571

Abstract

Magnetohydrodynamics is a method for generating electricity by utilizing the interaction between a magnetic field and an electrolyte fluid. MHD components: salt water electrolyte, Neodymium N52 magnet, and Cu-Zn electrode. The MHD used is a coarse salt water electrolyte. The purpose of the MHD model is as an innovative technological breakthrough that is used to support increasing the efficiency of the power generation system. The lowest efficiency is shown in the second data with variations in salt content of the 5 grams/liter experiment without MHD support, which is 0.08%. The highest efficiency is shown in the twentieth data with variations in salt content of the 95 gram/liter experiment supported by MHD, which is 0.59%. The maximum efficiency increase that can be achieved is 0.37% with variations in salt content of 60 grams/liter.