Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : JGISE-Journal of Geospatial Information Science and Engineering

Suitability Level Analysis of Google Map’s Travel Time and Traffic Density Classification Laksita Amelia Paramesti; Dedi Atunggal
Jurnal Geospasial Indonesia Vol 2, No 2 (2019): December
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jgise.51134

Abstract

 Traffic congestion is one of problem that occur in big cities, therefore people need traffic information to determine traffic condition. One of many applications that provides traffic information is Google Maps. From the information generated, there are insuitability between google maps’s traffic update and travel time with the actual condition. So the aim of this study is to analyze the suitability level of traffic density classification and google maps travel time. Based on the speed range by Google, the level of suitability can be determined, while the google maps travel time is done by statistical tests. The statistical test used is a statistical test of two parameters using table t with 95% confidence level. The results of this study indicate that the level of suitability of the traffic classification only reaches 35%. The low level of suitability is caused by network latency. While information on google maps travel time does not have a significant difference in actual time.
Analisis Tingkat Ketersediaan dan Cakupan dari Continuously Operating Reference Station (CORS) di Pulau Jawa Novie Chiuman; Dedi Atunggal; Nurrohmat Widjajanti
Jurnal Geospasial Indonesia Vol 4, No 1 (2021): June
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jgise.63277

Abstract

Ketersediaan layanan dan cakupan Continuously Operating Reference Station (CORS) sangat penting untuk kegiatan yang membutuhkan ketelitian level sentimeter atau lebih baik. Penelitian ini menganalisis ketersediaan layanan CORS Indonesia berdasar data web scraping server InaCORS pada Desember 2018. Cakupan CORS diestimasi dengan asumsi performansi Real Time Kinematic (RTK) single base hingga radius 30 kilometer dan untuk RTK network base hingga 50 kilometer dari masing-masing stasiun yang kemudian dipadukan dengan data cakupan jaringan komunikasi selular Telkomsel, Indosat dan 3 dari opensignal.com. Hasil web scraping menunjukkan terdapat 51 stasiun CORS dengan ketersediaan layanan di atas 80%, empat dengan ketersediaan layanan di bawah 80%, dua dengan ketersediaan layanan di bawah 50%, dan 14 yang tidak memiliki ketersediaan layanan. Cakupan CORS untuk metode RTK single base dan network base masing-masing adalah 72,942% dan 98,299%. Luas cakupan CORS terbesar diperoleh provider Telkomsel baik untuk metode RTK single base maupun network base yaitu masing-masing sebesar 34,622% dan 45,180%. Cakupan riil dari estimasi tersebut mungkin lebih besar karena hasil uji lapangan membuktikan bahwa tingkat ketepatan data dari OpenSignal hanya sebesar 69,444% dan masih banyak area tanpa data sinyal. Hasil analisis tingkat duplikasi cakupan CORS menunjukkan bahwa luas duplikasi cakupan CORS untuk metode RTK single base dan network base masing-masing sebesar 37,076% dan 82,382% dari luas total cakupan CORS. Hasil dari penelitian juga menunjukkan setidaknya ada 20 stasiun CORS yang perlu ditingkatkan ketersediaan datanya.
Optimasi Geometri Jaring GNSS dan RTS untuk Pemantauan Deformasi Kontinu Saluran Induk Kalibawang di Jembatan Talang Bowong, Kabupaten Kulon Progo Ghea Ayunda Siami; Bilal Ma'ruf; Dedi Atunggal
Jurnal Geospasial Indonesia Vol 4, No 2 (2021): December
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jgise.67795

Abstract

Kegiatan rehabilitasi dan pemeliharaan di Jembatan Talang Bowong membutuhkan pemantauan gerakan massa tanah secara real-time dan kontinu. Penelitian ini berusaha mendesain jaring kontrol pemantauan gerakan massa tanah secara geometrik dengan data simulasi yang diturunkan dari data orthophoto sebagai langkah awal untuk pembangunan jaring kontrol pemantauan. Data simulasi yang didapatkan berupa koordinat distribusi titik kontrol kemudian diturunkan menjadi vektor baseline. Nilai ketelitian pada penelitian ini didapatkan dari alat yang digunakan pada saat pemantauan berlangsung yaitu GNSS Leica seri GM30 dan RTS Leica seri TS16 1”. Jaring kontrol pemantauan didesain berdasarkan integrasi antara GNSS dan RTS. Pembuatan desain jaring kontrol GNSS dilakukan dengan membentuk jaring dengan baseline yang sederhana hingga kompleks. Sedangkan, pembuatan desain jaring kontrol RTS dilakukan berdasarkan variasi jarak antar titik prisma target. Nilai matriks varian-kovarian pengamatan dari estimasi hitung kuadrat terkecil digunakan untuk pemilihan desain geometri jaring terbaik berdasarkan hasil perhitungan kriteria presisi yang terdiri atas kriteria A-Optimality, D-Optimality, E-Optimality, S-Optimality, dan I-Optimality. Nilai matriks kofaktor residu digunakan untuk pemilihan desain geometri jaring terbaik berdasarkan kriteria kehandalan yang terdiri atas aspek redundansi individu, kehandalan dalam, dan kehandalan luar. Hasil penelitian menunjukkan bahwa desain jaring GNSS yang paling optimal yaitu jaring DG04. Hal ini ditunjukkan dari nilai kriteria presisi dan kehandalan luar paling kecil serta nilai kriteria redundansi individu paling besar. Desain jaring RTS yang paling optimal yaitu jaring rts01. Hal ini ditunjukkan dari nilai kriteria presisi, kehandalan dalam, dan kehandalan luar paling kecil serta nilai kriteria redundansi individu paling besar.
Pendefinisian Jaring Kontrol Sistem Cerdas Candi Borobudur ke dalam Datum SRGI 2013 Nerissa Mutiara Christy; Bilal Ma'ruf; Dedi Atunggal
Jurnal Geospasial Indonesia Vol 5, No 2 (2022): December
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jgise.73504

Abstract

Candi Borobudur merupakan candi Buddha terbesar di dunia dan diakui sebagai salah satu warisan budaya yang dilindungi oleh United Nations Educational, Scientific and Cultural Organization (UNESCO). Sebagai salah satu realisasi pemeliharaan Candi Borobudur dilakukan pemantauan stabilitas Candi Borobudur melalui pengukuran yang dilakukan secara periodik setiap tahun sejak 1983. Seiring dengan kemajuan teknologi, pemantauan stabilitias candi dapat dilakukan dengan menggunakan system cerdas. Untuk itu diperkenalkan Sistem Cerdas Candi Borobudur. Sistem Cerdas Candi Borobudur menggunakan Robotic Total Station (RTS) untuk pemantauan deformasi secara real-time. Untuk mendukung pemantauan stabilitas candi menggunakan (RTS) perlu dilakukan pendefinisian jaring kontrol pemantauan sistem cerdas ke dalam datum Sistem Referensi Geospasial Indonesia (SRGI) 2013. Pada penelitian ini dilakukan pendefinisian jaring kontrol pemantauan yang berada di halaman Candi Borobudur ke dalam datum SRGI 2013. Pendefinisian dilakukan dengan pengamatan Global Navigation Satellite System (GNSS) metode statik pada 7 November 2019 date of year (doy) 311 selama ± 6 jam dengan sampling-rate 30 detik dan mask angle 15°. Pengolahan data pengamatan GNSS dilakukan dengan menggunakan software Spectra Precision GeoGenius dan 4 titik Continuously Operating Reference System (CORS) Badan Informasi Geospasial (BIG) CKBM, CMGL, JOGS, dan CSLO sebagai titik ikat. Analisis penentuan kelas dan orde mengacu Standar Nasional Indonesia Jaring Kontrol Horizontal (SNI JKH). Hasil dari penelitian yang telah dilakukan berupa 9 titik jaring kontrol pemantauan sistem cerdas yang telah terdefinisi dengan baik terhadap 4 titik CORS BIG dengan ketelitian berkisar dari 4 mm s.d. 13 mm. Penentuan kelas yang dilakukan menggunakan hasil perataan jaring bebas dengan 1 titik ikat. Orde dari jaring ditentukan dari hasil perataan jaring terikat dengan 4 titik kontrol yang terdistribusi pada 4 kuadran. Hasil dari analisis menunjukkan bahwa jarring dikualifikasi sebagai kelas 2A dan orde 1. Pemantauan sistem cerdas menggunkan RTS sudah dapat dilakukan dengan mengacu pada koordinat titik-titik jaring pemantauan yang sudah diperoleh.