The Viola-Jones algorithm remains a cornerstone in computer vision, particularly for object and face detection. This bibliometric study provides a comprehensive analysis of the algorithm’s academic impact and research trends, encompassing publication patterns, citation metrics, influential authors, and co-occurrence of keywords. The findings indicate a significant rise in research outputs and citations between 2016 and 2020, reflecting the algorithm's sustained relevance and application in various domains. Network visualization maps further reveal the algorithm's integration with diverse fields, including machine learning, image processing, and neural networks, emphasizing its versatility and adaptability to emerging technological challenges. Key research contributions include advancements in hybrid approaches, combining the Viola-Jones framework with techniques such as convolutional neural networks and HOG-SVM for improved detection accuracy. However, limitations such as computational inefficiency and sensitivity to environmental factors persist, presenting opportunities for innovation. This study concludes by highlighting future research directions, such as integrating deep learning and edge computing to enhance algorithmic performance in real-time and complex scenarios. This study provides a valuable reference for researchers and practitioners aiming to extend the Viola-Jones algorithm’s capabilities and applications by consolidating existing knowledge and identifying research gaps.
Copyrights © 2025