Claim Missing Document
Check
Articles

Found 10 Documents
Search

Analisis Forensik Cyberbullying pada Aplikasi IMO Messenger Menggunakan Metode Association of Chief Police Officers Imam Riadi; Sunardi Sunardi; Yana Safitri
Jurnal Bumigora Information Technology (BITe) Vol 5 No 1 (2023)
Publisher : Prodi Ilmu Komputer Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/bite.v5i1.2977

Abstract

The development of computer technology is increasing very rapidly. This has both positive and negative impacts. One of the negative impact is committing acts of cyberbullying. This study uses the ACPO method to investigate the cyberbullying crimes through evidence that will be found. The ACPO method in the Imo Messenger investigation has four stages, namely Plan, Capture, Analysis, and Present. Digital data in the form of 16 conversation text, 29 user ID, 6 deleted data, and a group used as parameters in the research process. The test was performed using the tool of MOBILEdit Forensic Express. The results based on the digital data obtained 100% of conversation text, user ID, and group, while 0% for deleted data.
Mobile Forensic for Body Shaming Investigation Using Association of Chief Police Officers Framework Yana Safitri; Imam Riadi; Sunardi Sunardi
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 22 No 3 (2023)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v22i3.2987

Abstract

Body shaming is the act of making fun of or embarrassing someone because of their appearance, including the shape or form of their body. Body shaming can occur directly or indirectly. MOBILEdit Forensic Express and Forensic ToolKit (FTK) Imager are used to perform testing of evidence gathered through Chat, User ID, Data Deletion, and Groups based on digital data obtained on IMO Messenger tokens on Android smartphones. This study aimed to collect evidence of conversations in body shaming cases using the Association of Chiefs of Police (ACPO) framework with MOBILedit Forensic Express and FTK Imager as a tool for testing. Based on the research findings, MOBILedit Forensic Express got an extraction yield of 0.75%. In contrast, using the FTK Imager got an extraction yield of 0.25%. The ACPO framework can be used to investigate cases of body shaming using mobile forensics tools so that the extraction results can be found. The results of this study contributed to forensic mobile knowledge in cases of body shaming or cyberbullying ACPO framework as well as for the investigators.
PELATIHAN MARKETPLACE SHOPEE UNTUK PENINGKATAN KETERAMPILAN PENJUALAN ONLINE Mu'min, Muhammad Amirul; Safitri, Yana; Alamin, Zumhur; Sa’adati, Yuan; Fathir, Fathir
Taroa: Jurnal Pengabdian Masyarakat Vol 4 No 1 (2025): Januari
Publisher : LPPM IAI Muhammadiyah Bima

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52266/taroa.v4i1.3849

Abstract

Pelatihan pemberdayaan masyarakat merupakan salah satu langkah strategis untuk meningkatkan keterampilan dan pengetahuan masyarakat tentang marketplace online, khususnya bagi pelaku usaha. Berdasarkan latar belakang tersebut, program ini bertujuan memberikan pemahaman tentang konsep dan praktik penggunaan marketplace sebagai upaya meningkatkan peluang ekonomi di era digital. Metode pelatihan meliputi penyampaian materi, diskusi interaktif, dan pendampingan langsung antara pemateri dan peserta. Hasilnya menunjukkan peningkatan signifikan pada pemahaman peserta, di mana sebelumnya dari 34 peserta, hanya 1 orang yang memiliki akun marketplace online, 2 orang yang memahami konsepnya, dan 31 peserta masih awam. Setelah pelatihan, 12 peserta memahami marketplace online, sementara 22 peserta membutuhkan pendampingan lebih lanjut yang dilakukan melalui diskusi interaktif. Rekomendasi ke depan adalah mengembangkan program pelatihan yang lebih berfokus pada peningkatan keterampilan kerja dan kewirausahaan untuk pelaku usaha dalam memastikan keberlanjutan pemberdayaan masyarakat secara lebih terarah dan berkelanjutan.
Mobile Forensic Analysis on IMO Messenger Application Using ACPO and NIJ Frameworks Safitri, Yana; Firmansyah, Firmansyah; Mu’min, Muhammad Amirul
Insect (Informatics and Security): Jurnal Teknik Informatika Vol. 11 No. 1 (2025): Maret 2025
Publisher : Universitas Muhammadiyah Sorong

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33506/insect.v10i2.4052

Abstract

The need for efficient digital forensic tools has become increasingly urgent with the rapid development of digital communication platforms. This study aims to compare forensic frameworks on the Android application IMO Messenger, focusing on the Association of Chiefs of Police (ACPO) and the National Institute of Justice (NIJ) frameworks. The research utilizes the forensic tools MOBILEdit Forensic Express and Autopsy. The primary objective of the study is to gather evidence related to a body-shaming case. The findings show that MOBILEdit Forensic Express Pro achieved a 100% extraction rate, while Autopsy managed only 3.33%. By adhering to the guidelines established by ACPO and NIJ, the data extraction process was conducted following legitimate and accountable procedures. The use of certified tools and appropriate methods ensured that the extracted data remained accurate, valid, and reliable. These findings contribute to advancing knowledge in mobile forensics for addressing cyberbullying, providing valuable insights for investigators.
Masyarakat Muslim Kamboja Pasca Rezim Khmer Merah: Penindasan, Perlawanan, dan Kebangkitan Julianti, Pipi Emi; Safitri, Yana; Seprina, Reka
Prabayaksa: Journal of History Education Vol 5, No 1 (2025): Prabayaksa: Journal of History Education (March)
Publisher : Lambung Mangkurat University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/pby.v5i1.12538

Abstract

The Muslim community in Cambodia, primarily composed of Cham and Malay ethnic groups, faced severe persecution under the Khmer Rouge regime (1975–1979). The regime’s repressive policies included the suppression of religious freedom, destruction of places of worship, and executions of Muslim leaders and figures. This oppression led to resistance, although the Muslim uprising in Cambodia was quickly suppressed. After the fall of the Khmer Rouge in 1979, the Cambodian Muslim community began rebuilding their lives. This revitalization process included restoring international networks, economic recovery, rebuilding religious and educational infrastructure, and fighting for civil rights. This study employs a historical approach using heuristic methods, source criticism, interpretation, and historiography. The findings indicate that following the fall of the Khmer Rouge, the Cambodian Muslim community gradually regained their rights and started contributing to Cambodia’s social, economic, and political landscape.
Trends and Impact of the Viola-Jones Algorithm: A Bibliometric Analysis of Face Detection Research (2001-2024) Wijaya, Setiawan Ardi; Famuji, Tri Stiyo; Mu'min, Muhammad Amirul; Safitri, Yana; Tristanti, Novi; Dahmani, Abdennasser; Driss, Zied; Sharkawy, Abdel-Nasser; Al-Sabur, Raheem
Scientific Journal of Engineering Research Vol. 1 No. 1 (2025): January
Publisher : PT. Teknologi Futuristik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64539/sjer.v1i1.2025.8

Abstract

The Viola-Jones algorithm remains a cornerstone in computer vision, particularly for object and face detection. This bibliometric study provides a comprehensive analysis of the algorithm’s academic impact and research trends, encompassing publication patterns, citation metrics, influential authors, and co-occurrence of keywords. The findings indicate a significant rise in research outputs and citations between 2016 and 2020, reflecting the algorithm's sustained relevance and application in various domains. Network visualization maps further reveal the algorithm's integration with diverse fields, including machine learning, image processing, and neural networks, emphasizing its versatility and adaptability to emerging technological challenges. Key research contributions include advancements in hybrid approaches, combining the Viola-Jones framework with techniques such as convolutional neural networks and HOG-SVM for improved detection accuracy. However, limitations such as computational inefficiency and sensitivity to environmental factors persist, presenting opportunities for innovation. This study concludes by highlighting future research directions, such as integrating deep learning and edge computing to enhance algorithmic performance in real-time and complex scenarios. This study provides a valuable reference for researchers and practitioners aiming to extend the Viola-Jones algorithm’s capabilities and applications by consolidating existing knowledge and identifying research gaps.
Post-Quantum Cryptography Review in Future Cybersecurity Strengthening Efforts Mu'min, Muhammad Amirul; Safitri, Yana; Saputra, Sabarudin; Sulistianingsih, Nani; Ragimova, Nazila; Abdullayev, Vugar
Scientific Journal of Engineering Research Vol. 1 No. 3 (2025): July
Publisher : PT. Teknologi Futuristik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64539/sjer.v1i3.2025.35

Abstract

The development of quantum computing technology brings significant challenges to conventional crypto-graphic systems that are currently widely used in digital data security. Attacks made possible by quan-tum computers have the potential to weaken classical algorithms such as RSA and ECC, so a new ap-proach is needed that can guarantee long-term security. This study aims to systematically review the ef-fectiveness and readiness of the implementation of post-quantum cryptography (PQC) algorithms, espe-cially those that have been recommended by NIST, in order to strengthen the resilience of future cyberse-curity systems. The method used was a structured literature study with comparative analysis of lattice-based (Kyber and Dilithium), code-based (BIKE), and hash-based (SPHINCS+) PQC algorithms. Data are obtained from official documents of standards institutions as well as the latest scientific publications. The results of the analysis show that lattice-based algorithms offer an optimal combination of security and efficiency, and demonstrate high readiness to be implemented on limited devices. Compared to other al-gorithms, Kyber and Dilithium have advantages in terms of performance and scalability. Thus, this re-search contributes in the form of mapping the practical readiness of the PQC algorithm that has not been widely studied in previous studies, and can be the basis for the formulation of future cryptographic adop-tion policies. These findings are expected to help the transition process towards cryptographic systems that are resilient to quantum threats.
Analisis Komparatif Tools Forensik Digital dalam Investigasi Jejak Kejahatan pada Aplikasi Pesan Instan: Sebuah Tinjauan Sistematis Safitri, Yana; Muhammad Amirul Mu'min; Galih Pramuja Inngam Fanani
Scientific: Journal of Computer Science and Informatics Vol. 1 No. 2 (2024): Juli 2024
Publisher : Universitas Muhammadiyah Bima

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34304/scientific.v1i2.335

Abstract

Pesatnya penggunaan aplikasi pesan instan dalam kehidupan sehari-hari telah menjadikannya sebagai salah satu sarana potensial dalam aktivitas kriminal digital. Hal ini menimbulkan tantangan serius bagi investigasi forensik digital dalam mengungkap jejak kejahatan yang tersembunyi di dalam aplikasi tersebut. Penelitian ini bertujuan untuk melakukan analisis komparatif terhadap berbagai tools forensik digital yang digunakan untuk mengekstraksi dan menganalisis data dari aplikasi pesan instan. Melalui pendekatan tinjauan sistematis, penelitian ini mengkaji lima tools utama: Cellebrite UFED, Magnet AXIOM, MOBILedit Forensic, XRY, dan Oxygen Forensic. Setiap tools dievaluasi berdasarkan efektivitas ekstraksi data, kecepatan proses, serta kelengkapan informasi forensik yang dihasilkan. Hasil penelitian menunjukkan bahwa tidak ada satu tools yang unggul secara mutlak, namun Cellebrite UFED dan Magnet AXIOM menonjol dalam hal keberhasilan ekstraksi dan kelengkapan metadata. Penelitian ini memberikan kontribusi signifikan dengan menawarkan pemetaan komparatif yang berguna bagi praktisi forensik digital dalam memilih tools yang sesuai dengan kebutuhan investigasi. Dengan pemahaman yang lebih terarah mengenai kekuatan dan keterbatasan masing-masing tools, penelitian ini dapat membantu meningkatkan efisiensi dan akurasi dalam proses penyelidikan digital di era komunikasi terenkripsi saat ini.
Strategi dan Efektivitas Deep Learning untuk Mitigasi Ancaman Keamanan Jaringan di Era IoT Safitri, Yana; Dahlan; Maulana Muhammad Jogo Samodro
Scientific: Journal of Computer Science and Informatics Vol. 2 No. 1 (2025): Januari 2025
Publisher : Universitas Muhammadiyah Bima

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34304/scientific.v1i2.338

Abstract

Pertumbuhan pesat perangkat Internet of Things (IoT) telah membuka peluang besar dalam transformasi digital di berbagai sektor, namun juga menghadirkan tantangan serius terkait keamanan jaringan. Perangkat IoT yang umumnya memiliki kapasitas komputasi terbatas menjadi sasaran empuk bagi berbagai jenis serangan siber. Penelitian ini bertujuan untuk mengevaluasi efektivitas berbagai pendekatan deep learning dalam mendeteksi ancaman keamanan pada jaringan IoT secara otomatis dan adaptif. Metode yang digunakan mencakup eksperimen komparatif terhadap beberapa arsitektur deep learning, seperti Transformer, CNN + LSTM, dan GAN + CNN, dengan memanfaatkan dataset publik UNSW-NB15. Penilaian performa dilakukan menggunakan metrik evaluasi seperti akurasi dan F1-score, serta analisis kemampuan model dalam mendeteksi serangan kompleks seperti DDoS, port scanning, dan serangan zero-day. Hasil penelitian menunjukkan bahwa model Transformer unggul dengan akurasi mencapai 99,1%, sementara model GAN + CNN menunjukkan keunggulan dalam mendeteksi pola serangan baru yang belum dikenali sebelumnya. Model CNN + LSTM juga terbukti efektif dalam menangkap pola spasio-temporal serangan. Penelitian ini memberikan kontribusi signifikan dalam pengembangan sistem deteksi intrusi cerdas berbasis deep learning untuk ekosistem IoT. Temuan ini berpotensi diterapkan pada sistem keamanan jaringan real-time dan berskala besar yang adaptif terhadap ancaman baru.
MASYARAKAT MUSLIM KAMBOJA PASCA REZIM KHMER MERAH (1979-1980) SEBAGAI SUMBER BELAJAR SEJARAH Julianti, Pipi Emi; Safitri, Yana; Seprina, Reka
Sajaratun : Jurnal Sejarah dan Pembelajaran Sejarah Vol 9 No 1 (2024): Sajaratun : Jurnal Sejarah dan Pembelajaran Sejarah
Publisher : Program Studi Pendidikan Sejarah Universitas Flores

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37478/sajaratun.v9i1.4315

Abstract

Komunitas Muslim di Kamboja mempunyai sejarah yang sulit. Setelah rezim Sihanouk jatuh, kekuasaan Kamboja direbut oleh kediktatoran Khmer Merah yang berideologi komunis. Peraturan baru pemerintahan Khmer Merah membahayakan kemampuan komunitas Muslim Kamboja untuk hidup normal. Mereka mengadopsi teknik baru yang secara efektif mengisolasi minoritas Muslim Kamboja pada saat itu. Tindakan rezim Khmer Merah memicu kemarahan di kalangan Muslim Kamboja. Kekejaman Khmer Merah terhadap Muslim Kamboja akhirnya berujung pada pemberontakan dan gerakan sosial. Muslim Kamboja bangkit pada tahun 1975 sebagai protes atas taktik opresif Khmer Merah. Namun pemberontakan tersebut dengan cepat dapat dipadamkan karena tidak mendapat simpati dari pihak lain. Khmer Merah menghancurkan pemukiman Muslim yang ada dan memandang Muslim Kamboja sebagai musuh internal. Khmer Merah memantau setiap pergerakan umat Islam di Kaboja, sehingga memperburuk depresi mereka. Hingga pertengahan Juli 1978, terjadi pemberontakan dahsyat melawan rezim Khmer Merah.