In the rapidly developing field of smart cities, accurately predicting weather conditions plays a vital role in various sectors, including industry, tourism, agriculture, social planning, architecture, and economic development. Unfortunately, the instruments used (such as pyranometers, barometers, and thermometers) often suffer from low accuracy, high computational costs, and a lack of robustness. This limitation affects the reliability of weather predictions and their application across these critical areas. This study proposes artificial neural network-multilayer perceptrons (ANN-MLPs). A dataset of 480 data points was used, with 80% allocated for the training phase, 10% for the validation phase, and 10% for the testing phase. The best results were obtained with the structure 6-17-1 (6 inputs, 17 hidden neurons, and 1 output neuron) to predict weather condition data in the Ghardaïa district. Weather conditions parameters include air temperature, relative humidity, wind speed, and cumulative precipitation. Results showed that the most relevant input factors are, in order of importance: earth-sun distance (DT-S) with a relative importance (RI) of 31.10%, factor conversion (d) with an RI of 26.05%, and solar radiation (SR) with an RI of 16.26%. The contribution of the elevation of the sun (HI) has an RI of 13.29%. The optimal configuration includes seventeen neurons in the hidden layer with a logistic sigmoid activation function and a Levenberg–Marquardt learning algorithm, resulting in a root mean square error (RMSE) of 3.3043% and a correlation coefficient (R) of 0.9683. The proposed model can predict both short- and long-term climate factors such as solar radiation, air temperature, and wind energy in areas with similar conditions.