cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota banjarmasin,
Kalimantan selatan
INDONESIA
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer
ISSN : 25983245     EISSN : 25983288     DOI : -
We are the Editor of Jurnal ELTIKOM, invites Mr. / Ms Lecturer, researcher and practitioner to be able to publish your paper on topics covering Electrical Engineering, Electronics Engineering, Telecommunications Engineering, Computer Engineering, Information Technology.
Arjuna Subject : -
Articles 9 Documents
Search results for , issue "Vol. 8 No. 1 (2024)" : 9 Documents clear
A Systematic Literature Review: Performance Comparison of Edge Detection Operators in Medical Images Mayangsari, Ariefa Diah; Agung, Ignatius Wiseto Prasetyo
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 8 No. 1 (2024)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v8i1.1012

Abstract

Medical images play a crucial role in the diagnosis of diseases. To make the diagnosis more accurate, the image should usually be enhanced first using image processing methods such as segmentation and edge detection stages. However, the complexity and noise that may arise in these images pose challenges in edge detection. Therefore, to portray the characteristics of edge detection operators, this research presents a systematic literature review of the performance of various edge detection operators in medical images, focusing on literature published between 2019 and 2023. After the selection process, 41 papers out of the initial 112 collected papers were chosen for further review. The study evaluates edge detection operators e.g., Canny, Sobel, Prewitt, Roberts, and Laplacian of Gaussian (LOG) on medical images such as X-rays, MRI, CT scans, ultrasound, Pap smears, and others. In the analysis, the accuracy, computational time, and response to noise of each operator are compared. The results indicate that despite longer computational times, Canny emerges as the most accurate operator, especially in Pap smear and CT scan images. The LOG operator offers high accuracy in MRI images with more efficient computational time. Evaluation of operator reliability against noise confirms the superiority of Canny. Furthermore, the future potential of edge detection in medical services is also reviewed. For instance, Canny, known for accurate and noise-resistant edges, enhances detection in complex CT-Scan and X-ray images. Meanwhile, LOG, handling artifacts with lower computational time, improves edge clarity in medical images. Potential applications include enhanced diagnosis, efficient patient monitoring, and improved image clarity in future medical services.
Design of A Cataract Detection System based on The Convolutional Neural Network Agustin, Sarah; Putri, Eka Novelia; Ichsan, Ichwan Nul
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 8 No. 1 (2024)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v8i1.1019

Abstract

Cataract, a condition characterized by clouding of the eye's lens, leads to decreased vision and potentially blindness. In Indonesia, it is the predominant cause of blindness, accounting for 81.2% of cases. Given the rising life expectancy, the incidence of degenerative diseases like cataracts is expected to increase. This research aims to develop a cataract detection system capable of classifying eye images as either indicative of cataracts or normal. Utilizing Convolutional Neural Networks (CNN) and RGB-based image processing—including edge detection techniques such as Canny and Prewitt—the system identifies eye contours. This facilitates image segmentation to ascertain the eye's condition. Therefore, image collection and processing models play a crucial role in this study. The research findings indicate that the system functions effectively, with a 98% success rate in accurately processing normal eye images through the CNN model without detecting cataracts. When tested using grayscale imaging, cataract-afflicted eyes—characterized by red spots in the images—were also successfully identified by the CNN model. These test results demonstrate that the designed cataract detection system can accurately classify images into normal or cataract-afflicted eyes with high precision. This system shows promise for use in early cataract detection, potentially helping to reduce the prevalence of cataract-related blindness in Indonesia.
Heart Sound Processing for Early Diagnostic of Heart Abnormalities using Support Vector Machine Paschalis, Sebastian Michael; Hutapea, Duma Kristina Yanti; Bachri, Karel Octavianus
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 8 No. 1 (2024)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v8i1.1031

Abstract

This paper addresses the critical issue of cardiovascular disease (CVD), the leading cause of global mortality, emphasizing the imperative for effective and early detection to mitigate CVD-related deaths. The research problem underscores the urgency of developing advanced diagnostic tools to identify heart abnormalities promptly. The primary objective is to create a Support Vector Machine (SVM) algorithm for accurate classification of different heart conditions, namely Normal heart, Mitral Stenosis, and Mitral Regurgitation. To achieve this objective, the study utilizes a dataset of heart sounds available online using a 10-fold cross-validation method. The focus is on evaluating the efficacy of various kernel functions within the SVM framework for heart sound classification. The findings demonstrate that the linear kernel exhibits superior accuracy and robustness in effectively classifying heart conditions. Notably, the proposed classification method attains an impressive 96% accuracy, highlighting its potential as a reliable tool for early detection of cardiovascular diseases. This research contributes to the ongoing efforts to enhance diagnostic capabilities and ultimately reduce the global burden of CVD-related fatalities.
Enhancing Power Transformer Oil Quality Weight Factor using A Genetic Algorithm Wijayaningrum, Vivi Nur; Abdillah, Muhammad Navis; Abdullah, Moch Zawaruddin
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 8 No. 1 (2024)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v8i1.1052

Abstract

Power transformers are critical to electrical power systems but are prone to failures due to factors such as heat, electricity, chemical reactions, mechanical stress, and adverse environmental conditions. Moni-toring the insulating oil effectively is key to preventing these failures. A major challenge in this process is determining the optimal weights for the oil quality index, which lacks a standardized benchmark and often relies on subjective expert assessments. To reduce expert bias and subjectivity, this research utilizes a genetic algorithm to optimize the weightings for five essential parameters: color, water content, break-down voltage (BDV), interfacial tension (IFT), and acidity. The algorithm operates through three stages: crossover, mutation, and selection, and analyzes data from 504 oil tests across various transformers. The mean absolute percentage error (MAPE) is used as the fitness value to assess the algorithm's effective-ness. The optimization process determined the best conditions as 132 iterations, a population size of 180, a crossover rate of 0.2, and a mutation rate of 0.8. These parameters achieved an average MAPE of 1.799% over ten trials, indicating high accuracy. This research not only optimizes the weighting of the oil quality index but also significantly reduces the need for expert input and subjective judgments in trans-former maintenance. The findings are expected to improve the efficiency and reliability of power trans-formers, thereby minimizing failures and associated economic costs.
Detection of Bias in Machine Learning Models for Predicting Deaths Caused by COVID-19 Zachra, Fatimatus; Basuki, Setio
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 8 No. 1 (2024)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v8i1.1081

Abstract

The COVID-19 pandemic has significantly impacted global health, resulting in numerous fatalities and presenting substantial challenges to national healthcare systems due to a sharp increase in cases. Key to managing this crisis is the rapid and accurate identification of COVID-19 infections, a task that can be enhanced with Machine Learning (ML) techniques. However, ML applications can also generate biased and potentially unfair outcomes for certain demographic groups. This paper introduces a ML model designed for detecting both COVID-19 cases and biases associated with specific patient attributes. The model employs Decision Tree and XGBoost algorithms for case detection, while bias analysis is performed using the DALEX library, which focuses on protected attributes such as age, gender, race, and ethnicity. DALEX works by creating an "explainer" object that represents the model, enabling exploration of the model's functions without requiring in-depth knowledge of its workings. This approach helps pinpoint influential attributes and uncover potential biases within the model. Model performance is assessed through accuracy metrics, with the Decision Tree algorithm achieving the highest accuracy at 99% following Bayesian hyperparameter optimization. However, high accuracy does not ensure fairness, as biases related to protected attributes may still persist.
Design and Implementation of A Dual-Axis Solar Tracking System using Arduino Uno Microcontroller Pardosi, Cristoni Hasiholan; Siregar, Marsul; Pandjaitan, Lanny W.
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 8 No. 1 (2024)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v8i1.1105

Abstract

This paper presents a dual-axis solar tracking system developed and evaluated using LDR sensors and stepper motors, controlled by an Arduino Uno microcontroller. The aim was to enhance photovoltaic energy efficiency by designing a system capable of automatically adjusting the position of solar panels to follow the sun's movement throughout the day. Comparative testing between static solar panels and those equipped with solar trackers demonstrated that the latter produced 35% more power on average. Additionally, the dual tracking system showed a 14% improvement in efficiency over previous averages noted in existing references. Analysis of azimuth and elevation angles confirmed that the solar tracker accurately adjusted the panels' position, significantly boosting solar energy capture. This finding is consistent with prior research, which also supports the efficacy of solar trackers in enhancing photovoltaic efficiency. Future research should expand testing to include various weather and environmental conditions and focus on developing more advanced control algorithms to enhance system responsiveness. Continuous advancements in solar tracking technology are vital for maximizing solar energy potential and facilitating a transition to a more sustainable society.
Avseed Battery: Environmentally Friendly Battery Innovation as Electrolytes in Dry Batteries Habibi, Rahmat Farhan; Dwiyanti, Alda; Suci Andarini, Annisa; Aji Putra Wibowo, Bayu; Harsono, Djiwo
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 8 No. 1 (2024)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v8i1.1106

Abstract

Energy is a fundamental force driving transformative processes across various domains. It is perpetual and adheres to the law of energy conservation, remaining indestructible. However, the challenge lies in the finite nature of conventional energy sources, which convert energy for intended purposes and cater to diverse needs, often escalating the overall cost. Among the commonly employed energy sources, batteries play a pivotal role. This study explores the viability of avocado seeds as potential electrolytes in dry batteries. The objectives are to assess the effectiveness of avocado seeds as electrolytes and to investigate the impact of solution concentration and composition on the generated electrical energy. A dry element battery, known for converting chemical energy into electrical energy through Redox (Reduction-Oxidation) electrochemical reactions, serves as the experimental focus. Using a quantitative approach with laboratory experiments, five treatments were administered, featuring different ratios (1:1, 1:2, 1:3), a negative control with avocado seeds, and a positive control with salt. The bio-battery effectiveness assessment revealed that the P4 composition (negative control with avocado seeds) exhibited the highest initial voltage of 3.4 V and an extended runtime of 156 hours. In summary, this research underscores the potential of avocado seeds as electrolytes in dry batteries, supported by observations of voltage levels and ignition times.
Diabetic Retinopathy Severity Level Detection Using Convolution Neural Network Firmansyah, Achmad Dinofaldi; Kahar, Saliyah Binti; Fitri, Zilvanhisna Emka
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 8 No. 1 (2024)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v8i1.1112

Abstract

Diabetic retinopathy is a common complication of diabetes mellitus, leading to damage and blockage of retinal blood vessels. Early and accurate detection of diabetic retinopathy severity levels is crucial for timely treatment and prevention of blindness. Diagnostic methods rely on manual examination and human interpretation, resulting in slower and less efficient treatment processes. As a branch of artificial intelligence, computer vision offers a potential solution to analyze retinal images quickly and accurately. The developed system employs image processing techniques and a CNN-based classification model to detect and classify the severity levels of diabetic retinopathy. By providing an automated and efficient approach, the system aims to assist doctors and optometrists in making informed decisions and reducing subjectivity in diagnosis. Early detection through this system can facilitate prompt treatment and improve patient outcomes. The developed system achieves promising results through experimentation and testing with various datasets, with accuracy ranging from 80% to 97%. This project's integration of artificial intelligence, machine learning, and image processing technologies demonstrates their potential in healthcare applications, particularly in diabetic retinopathy diagnosis.
K-Means Clustering Method For Customer Segmentation Based On Potential Purchases Baiq Nikum Yulisasih; Herman, Herman; Sunardi, Sunardi
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 8 No. 1 (2024)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v8i1.1137

Abstract

The rapid growth in customer data has driven companies to develop smarter and more effective marketing strategies. One efficient approach is customer segmentation, which involves dividing a market or group of customers into smaller segments based on similar characteristics or behaviors. Customer segmentation improves understanding of customer needs, preferences, and behavior. This study uses customer segmentation based on purchase potential at Fast Moving Consumer Goods (FMCG). Analyzing potential purchases can help identify market opportunities, implement more effective pricing, target promotions, manage stock and distribution, and develop new products to enhance customer satisfaction. The most commonly used segmentation method is the K-Means Clustering algorithm, which groups data into homogeneous clusters. This study aims to segment customers based on potential purchases using the K-Means Clustering method. The customer dataset in FMCG stores was divided into three clusters using seven attributes: Sex, Marital Status, Age, Education, Income, Occupation, and Settlement Size. The results, calculated in Microsoft Excel, concluded after four iterations with three clusters: k1 (Cluster 1) with 535 customers having low purchase potential, k2 (Cluster 2) with 685 customers having high purchase potential, and k3 (Cluster 3) with 7810 customers having medium purchase potential.

Page 1 of 1 | Total Record : 9