cover
Contact Name
Irpan Adiputra pardosi
Contact Email
irpan@mikroskil.ac.id
Phone
+6282251583783
Journal Mail Official
sinkron@polgan.ac.id
Editorial Address
Jl. Veteran No. 194 Pasar VI Manunggal,
Location
Kota medan,
Sumatera utara
INDONESIA
Sinkron : Jurnal dan Penelitian Teknik Informatika
ISSN : 2541044X     EISSN : 25412019     DOI : 10.33395/sinkron.v8i3.12656
Core Subject : Science,
Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial Neural Network 14. Fuzzy Logic 15. Robotic
Articles 1,196 Documents
bayes Diagnosa Penyakit Ikan Hias Air Tawar Dengan Teorema Bayes Sinaga, Anita Sindar RM
Sinkron : jurnal dan penelitian teknik informatika Vol. 3 No. 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1188.957 KB) | DOI: 10.33395/sinkron.v3i1.191

Abstract

Seekor ikan bila terserang suatu penyakit akan menunjukkan perubahan fisik, tampak dari gejala-gejala yang muncul. Dari gejala yang kelihatan dapat diketahui jenis penyakit ikan dan segera dilakukan tahap pengobatan agar tidak terjadi kerugian besar. Diagnosa merupakan tahap awal untuk mengetahui gejala-gejala dari suatu jenis penyakit ikan hias agar secara awal dapat mengatasi penyakit tersebut. Tujuan diagnosa menggunakan Teorema Bayes yaitu membantu masyarakat/orang awam mengerjakan pekerjaan para ahli untuk mendiagnosa penyakit ikan hias berbasdengan mudah, cepat dan prosesnya dapat dilakukan secara berulang secara otomatis. Rancangan perangkat lunak yang memiliki basis pengetahuan untuk domain tertentu dan menggunakan penalaran inferensi menyerupai seorang pakar dalam memecahkan suatu permasalahan. Dalam rancangan sistem pakar yang dibangun, ditetapkan gejala-gejala penyakit terdiri dari kode P001 sampai P0016, digunakan sebagai acuan untuk mendiagnosa penyakit. Kode gejala: G1 sampai G31, merupakan jenis gejala yang muncul. Form Data Konsultasi digunakan untuk menghitung gejala yang dipilih dengan menggunakan algoritma Teorema Bayes nantinya akan menghasilkan hasil diagnosa penyakit dan penanganannya. Berdasarkan gejala klinis dan diagnosa sementara penyebab ikan sakit adalah jamur, bakteri dan virus. Pada tahap pengujian, dilakukan uji coba terhadap aplikasi Sistem Pakar dengan Teorema Bayes yang telah dibangun. akan dicari hasil diagnosa dan persentase kemungkinan dari penyakit pada ikan hias dengan menggunakan perhitungan berdasarkan gejala yang dialami ikan. Setelah gejala dicentang sesuai dengan studi kasus, user mengklik tombol diagnosa dan selanjutnya akan tampil hasil diagnosa. Keywords—gejala; diagnosa; penyakit:, ikan hias air tawar; Teorema Bayes
Comparison of Machine Learning Classification Algorithms in Sentiment Analysis Product Review of North Padang Lawas Regency Yennimar, Yennimar; Rizal, Reyhan Achmad
Sinkron : jurnal dan penelitian teknik informatika Vol. 4 No. 1 (2019): SinkrOn Volume 4 Number 1, October 2019
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (421.962 KB) | DOI: 10.33395/sinkron.v4i1.10416

Abstract

The growth of SMEs in Indonesia, which has increased by 6% every year, is driven by continued growth by many parties, including the government and private institutions that often conduct business coaching and assistance. Problems that are often encountered are the lack of willingness of MSME business practitioners to apply information technology and the internet, besides that most of them live in rural areas with very limited internet access and many are not yet digital-literate, adequate digital technology utilization capabilities and the will of business people For SMEs to understand customer needs, a service that is consistent with standard service procedures will give a good impression and pay attention to customer feedback. This research was conducted by collecting data on MSME products obtained from the North Padang Lawas District Trade Industry Office followed by the development of a Paluta Market website as a marketplace for media promotion and marketing of MSME products in North Padang Lawas by applying a sentiment analysis approach using machine learning classification algorithm to produce product rating values based on public opinion of MSME products contained on the website, in addition the system is able to classify consumer comment data on MSME products from various sources from the umkm web, so that it becomes useful information for MSME businesses especially in North Padang Lawas Regency and the community at large. The results of the application of sentiment analysis of a product on the Paluta Market website can be used as a reference in improving service and product quality, so as to create a variety of new opportunities that are profitable for MSME businesses.
Penerapan Algoritma Apriori Dalam Pengendalian Kualitas Produk Pahlevi, Omar; Sugandi, Anton; Sintawati, Ita Dewi
Sinkron : jurnal dan penelitian teknik informatika Vol. 3 No. 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (357.113 KB)

Abstract

Penelitian ini dilakukan untuk mengetahui defect apa saja yang sering muncul pada proses injection dan kombinasi item defect apa saja yang sering terjadi, untuk melakukan pengendalian kualitas produk yang bersangkutan. Metode analisis yang digunakan adalah analisis kuantitatif dengan menggunakan metode algoritma apriori yang dapat mengelola nilai input yang sesuai dengan kriteria-kriteria pada item yang mempunyai nilai support dan confidence tertentu dengan perhitungan RapidMiner. Algoritma apriori merupakan salah satu algoritma dalam data mining yang dapat digunakan dalam association rule untuk menentukan frequent itemset yang berfungsi untuk membantu menemukan pola dalam sebuah data. Dengan menggunakan algoritma apriori, dapat menghasilkan pola kombinasi sebanyak 17(tujuh belas) rules dengan nilai support sebesar 70% dan nilai confidence tertinggi dari 17(tujuh belas) rules tersebut sebesar 93% yang terdapat dalam rule Lock Broken → Disscolour.
Model Segmentasi Pelanggan Dengan Kernel K-Means Clustering Berbasis Customer Relationship Management Lubis, Abdul Haris
Sinkron : jurnal dan penelitian teknik informatika Vol. 1 No. 1 (2016): SinkrOn Oktober Volume 1 Edisi 1 Tahun 2016
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (351.492 KB)

Abstract

Jurnal ini mengusulkan sebuah model aturan dalam menentukan pelanggan terbaik dan potensial Kantor Pos Medan. Hingga saat ini dalam menentukan pelanggan terbaik dan potensial menjadi persoalan di Instansi-instansi baik pemerintah maupun swasta khususnya yang bergerak dibidang jasa.Faktor-faktor yang berpengaruh secara dominan dalam menentukan pelanggan terbaik dan potensial masih belum dapat ditentukan secara pasti. Saat ini manajemen Kantor Pos Medan masih menggunakan secara manual dalam menentukan pelanggan terbaiknya, sehingga sangat mungkin terjadi kesalahan pada prosedur yang sudah berjalan. Hal ini akan berpengaruh terhadap hasil keputusan yang akan diambil oleh pihak manajemen Kantor Pos Medan. Untuk itu sangat penting dibuat sebuah model aturan untuk menentukan pelanggan terbaik dan potensial yang dapat digunakan pihak manajemen sebagai sistem pendukung dalam pengambilan keputusan. Data yang digunakan dalam penelitian ini berasal dari database Kantor Pos Medan tahun 2011 – bulan maret 2013. Dalam jurnal ini algoritma Kernel K-Means Clustering telah digunakan untuk mendapatkan suatu model aturan menentukan pelanggan terbaik dan potensial Kantor Pos Medan. Model aturan yang diperoleh menunjukkan bahwa katagori pelanggan terbaik dapat diperoleh jika transaksinya banyak dan besar uangnya sedang dan tinggi
The Selection of Best Employee by using Analytical Hierarchy Process Method in Go Wet Water Park Supriyanti, Supriyanti; Destiana, Henny
Sinkron : jurnal dan penelitian teknik informatika Vol. 4 No. 1 (2019): SinkrOn Volume 4 Number 1, October 2019
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (286.081 KB) | DOI: 10.33395/sinkron.v4i1.10188

Abstract

In a company, human resource is something that must really be considered, the company must have good quality of human resources and be able to work well so that the company's sustainability can be maintained. To maintain the quality and existence of its employees, the company needs to give appreciation to its employees so that employees are motivated to work better. Employees are not motivated to work better because there is no model employee selection yet. Selecting and determining model employees requires a method or decision support system to support the selection of model employees. There are many methods that can be used to select model employees, one of which is the Analytical Hierarchy Process method. To support the selection of model employees, software that can make it easier to determine model employees is needed. The software used is Expert Choice 2000 software. The results obtained from research on the selection of model employees using the Analytical Hierarchy Process method in Go Wet Water Park are employees named Nugraha successfully selected as a model employee in the company with an overall inconsistency of 0.1.
Pemilihan Pegawai Berprestasi dengan Menggunakan Metode Profile Matching Sudradjat, Budi
Sinkron : jurnal dan penelitian teknik informatika Vol. 3 No. 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (334.621 KB)

Abstract

Kecamatan Pinang Kota Tangerang memiliki penilaian prestasi kerja yang dilakukan setiap tahun, berdasarkan sasaran kerja dan absensi yang merupakan bahan evaluasi penilaian pegawai. Bagi pegawai yang terpilih akan diberikan penghargaan atau hadiah berupa parsel sembako. Banyaknya pegawai menjadi kesulitan tersendiri dalam memilih pegawai berprestasi, tidak dipungkiri juga bahwa pemilihan pegawai berprestasi pun sering dilakukan tidak objektif. Untuk mengetahui pegawai berprestasi perlu diadakan penilaian kinerja terhadap pegawai. Melakukan suatu penilaian dalam pemberian penghargaan untuk pegawai berprestasi diantaranya menggunakan sistem pendukung keputusan dalam membantu pemecahan suatu masalah. Metode yang digunakan dalam melakukan pemberian penghargaan untuk pegawai berprestasi yaitu metode profile matching. Dengan adanya penerapan metode profile matching untuk pemilihan pegawai terbaik untuk memecahkan permasalahan yang ada pada saat proses pemilihan pegawai terbaik, agar tidak terjadi kesalahan dalam pengambilan keputusan. Diharapkan dengan upaya ini dapat memberikan nilai secara objektif terhadap pegawai dan membantu pimpinan dalam memberikan penilaian kinerja pegawainya.
Deep Neural Networks Approach for Monitoring Vehicles on the Highway Husein, Amir Mahmud; Christopher, Christopher; Gracia, Andy; Brandlee, Rio; Hasibuan, Muhammad Haris
Sinkron : Jurnal dan Penelitian Teknik Informatika Vol 4 No 2 (2020): SinkrOn Volume 4 Number 2, April 2020
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (760.998 KB) | DOI: 10.33395/sinkron.v4i2.10553

Abstract

Vehicle classification and detection aims to extract certain types of vehicle information from images or videos containing vehicles and is one of the important things in a smart transportation system. However, due to the different size of the vehicle, it became a challenge that directly and interested many researchers . In this paper, we compare YOLOv3's one-stage detection method with MobileNet-SSD for direct vehicle detection on a highway vehicle video dataset specifically recorded using two cellular devices on highway activities in Medan City, producing 42 videos, both methods evaluated based on Mean Average Precision (mAP) where YOLOv3 produces better accuracy of 81.9% compared to MobileNet-SSD at 67.9%, but the size of the resulting video file detection is greater. Mobilenet-SSD performs faster with smaller video output sizes, but it is difficult to detect small objects.
Improving the Quality of Digital Images Using the Median Filter Technique to Reduce Noise Prasetio, Annas; Hasugian, Paska Marto
Sinkron : jurnal dan penelitian teknik informatika Vol. 4 No. 1 (2019): SinkrOn Volume 4 Number 1, October 2019
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (525.163 KB) | DOI: 10.33395/sinkron.v4i1.10155

Abstract

The combination of point, line, shape and color elements combined to create a physical imitation of an object is called an image. The arrangement of the box elements in the image forms pixels or matrices. each image experiences degradation or loss of quality called noise. The effect of gaussian noise is the number of colored dots that are equal to the percentage of noise. This study raises the topic of improving the quality of digital images using median filter techniques to reduce noise. In this study using color image data (Red Green Blue) as test data and then converted into grayscale images to determine the gray degree of the image. The grayscale image is stored in the database. Then noise is generated by using random numbers. Noise in the form of impulse can be positive or negative in the form of adding pixel values to the original image, or it can reduce the value of the original image. The noise type used is salt & pepper. Gray degrees 0-255 spread. Can be calculated through image histograms. To reduce noise the median filter technique is used. Image histogram as a measure of the spread of numbers from the median filter. The result is a median filter can reduce noise salt and pepper by using a matrix kernel.
Sistem Pendukung Keputusan Pemilihan Laptop pada Toko Online dengan Metode Fuzzy Tahani Syahroni, Abd Wahab; Rachmatullah, Sholeh
Sinkron : jurnal dan penelitian teknik informatika Vol. 3 No. 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1309.906 KB)

Abstract

The research in this paper is a study of the best laptop recommendations on laptop online stores using fuzzy methods. The fuzzy method used is the fuzzy database model of the tahani model with two variables, fuzzy and non-fuzzy variables with fire strength calculations using AND or OR logic. The criteria for fuzzy variables used include price, LCD, hard disk, memory, processor, and warranty. The criteria for non-fuzzy input variables consist of whether or not there are laptop facilities such as wifi, bluetooth and camera, while the membership functions used are triangular and shoulder-shaped curves. The first step is that the user chooses fuzzy data input, in fuzzy data input, the user is required to choose at least three variables, namely the hard disk, memory and processor variables. The price variable, screen (LCD) and warranty are optional (can be selected or not). For non fuzzy input variables are also optional. After that, the process of calculating the degree of membership of the fuzzy variable will be carried out based on the reference curve, then doing fire strength calculations using AND or OR logic, so that the best laptop recommendations are produced that match the user's choice criteria. From the results of the experiment showed that the application of fuzzy database method of tahani model was proven to produce laptop recommendations that match the criteria desired by the user as evidenced by the Likert scale of 72%, which means that the user or consumer agrees if the fuzzy database model of this model is applied to the store online laptop.
Decision Support System for Achieving Scholarship Selection by Using Profile Matching Method Handayani, Rani Irma; Triningsih, Triningsih; Putri, Melia
Sinkron : Jurnal dan Penelitian Teknik Informatika Vol 4 No 2 (2020): SinkrOn Volume 4 Number 2, April 2020
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (302.873 KB) | DOI: 10.33395/sinkron.v4i2.10530

Abstract

Learning is one of the obligations of students to do in every school activity where they study. However, sometimes many students are less able to digest the subject matter delivered by the teacher. Therefore, the school held a scholarship program for outstanding students. In order to motivate students to study harder. Achievement scholarships are given with the aim of motivating students to study harder. Currently the scholarship is not right on target because it is still done manually and it is not clear the criteria for a student to get an achievement scholarship. To conduct an assessment in awarding scholarships to high achieving students use a decision support system to help solve a problem. For this reason, to conduct an assessment in the awarding of scholarships, a decision support system using the Profile Matching method is used. Profile Matching method is one of the methods used in decision making. In this study, there are several aspects of the assessment for awarding achievement scholarships, namely the KKM Aspect, the Attendance Aspect, the Behavior Aspect, the Craft Aspect or the Discipline, the Neatness Aspect.

Page 18 of 120 | Total Record : 1196


Filter by Year

2016 2025


Filter By Issues
All Issue Vol. 9 No. 4 (2025): Articles Research October 2025 Vol. 9 No. 3 (2025): Article Research July 2025 Vol. 9 No. 2 (2025): Research Articles April 2025 Vol. 9 No. 1 (2025): Research Article, January 2025 Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024 Vol. 8 No. 3 (2024): Research Artikel Volume 8 Issue 3, July 2024 Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024 Vol. 8 No. 1 (2024): Articles Research Volume 8 Issue 1, January 2024 Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023 Vol. 7 No. 3 (2023): Article Research Volume 7 Issue 3, July 2023 Vol. 7 No. 2 (2023): Research Article, Volume 7 Issue 2 April, 2023 Vol. 7 No. 1 (2023): Articles Research Volume 7 Issue 1, 2023 Vol. 6 No. 4 (2022): Article Research: Volume 6 Number 4, October 2022 Vol. 6 No. 3 (2022): Article Research Volume 6 Number 3, July 2022 Vol. 6 No. 2 (2022): Articles Research Volume 6 Issue 2, April 2022 Vol. 6 No. 1 (2021): Article Research Volume 6 Issue 1: January 2021 Vol. 5 No. 2 (2021): Article Research Volume 5 Number 2, April 2021 Vol. 5 No. 2B (2021): Article Research October 2021 Vol 4 No 2 (2020): SinkrOn Volume 4 Number 2, April 2020 Vol. 5 No. 1 (2020): Article Research, October 2020 Vol. 4 No. 1 (2019): SinkrOn Volume 4 Number 1, October 2019 Vol 3 No 2 (2019): SinkrOn Volume 3 Number 2, April 2019 Vol. 3 No. 2 (2019): SinkrOn Volume 3 Number 2, April 2019 Vol 3 No 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018 Vol. 3 No. 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018 Vol. 2 No. 2 (2018): SinkrOn Volume 2 Nomor 2 April 2018 Vol. 2 No. 1 (2017): SinkrOn Volume 2 Nomor 1 Oktober 2017 Vol. 1 No. 2 (2017): SinkrOn Volume 1 Nomor 2 April 2017 Vol. 1 No. 1 (2016): SinkrOn Oktober Volume 1 Edisi 1 Tahun 2016 More Issue