cover
Contact Name
Aji Prasetya Wibawa
Contact Email
keds.journal@um.ac.id
Phone
+62818539333
Journal Mail Official
keds.journal@um.ac.id
Editorial Address
Universitas Negeri Malang Semarang St. No. 5, Malang, East Java, 65145, Indonesia
Location
Kota malang,
Jawa timur
INDONESIA
Knowledge Engineering and Data Science
ISSN : -     EISSN : 25974637     DOI : 10.17977/um018
KEDS, brings together researchers, industry practitioners, and potential users, to promote collaborations, exchange ideas and practices, discuss new opportunities, and investigate analytics frameworks on data-driven and knowledge base systems.
Articles 8 Documents
Search results for , issue "Vol 4, No 2 (2021)" : 8 Documents clear
Recognition of Handwritten Javanese Script using Backpropagation with Zoning Feature Extraction Anik Nur Handayani; Heru Wahyu Herwanto; Katya Lindi Chandrika; Kohei Arai
Knowledge Engineering and Data Science Vol 4, No 2 (2021)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v4i22021p117-127

Abstract

Backpropagation is part of supervised learning, in which the training process requires a target. The resulting error is transmitted back to the units below in its training process. Backpropagation can solve complicated problems because it consumes less memory than other algorithms. In addition, it also can produce solutions with a low error rate while executing less time. In image pattern recognition, backpropagation can be utilized for cultural preservation in many places worldwide, including Indonesia. It is used to recognize picture patterns in Javanese script writings. This study concluded that feature extraction approaches, zoning, and backpropagation could be utilized to distinguish handwritten Javanese characters. The best accuracy is attained at 77.00%, with the network architecture comprising 64 input neurons, 40 hidden neurons, a learning rate of 0.003, a momentum of 0.03, and an iteration of 5000. 
CNN based Face Recognition System for Patients with Down and William Syndrome Endang Setyati; Suharyono Az; Subroto Prasetya Hudiono; Fachrul Kurniawan
Knowledge Engineering and Data Science Vol 4, No 2 (2021)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v4i22021p138-144

Abstract

Down syndrome, also known as trisomy genetic condition, is a genetic disorder that affects many people. Williams syndrome is a hereditary disorder that can affect anyone at birth. It marks medical and cognitive issues, such as cardiovascular illness, developmental delays, and learning impairments. This is accompanied by exceptional verbal abilities, a gregarious attitude, and a passion for music. Down syndrome and William Syndrome are both genetic illnesses. However, it can be distinguished from the arrangement of chromosome 21. Down syndrome and William syndrome can also be identified by recognizing faces, or facial characteristics, such as observing particular facial features. Therefore, this research develops Convolutional Neural Network (CNN) architectures to recognize Down syndrome and William syndrome using a facial recognition approach. A total of 480 facial photos were used in the study, with 390 images used for training data and 90 images used for testing data. The identification class is divided into three categories, Down syndrome, William syndrome, and normal. There are 160 photos in each patient class. This research presents two CNN architectures using a grayscale image of 256×256 pixels. The first CNN architecture comprises 12 layers, while the second comprises 15 layers. The average accuracy results with 12 layers were 91% by attempting to train and test six times. With 15 layers, the average accuracy value is 89%. In comparison, the first architecture has the highest accuracy value.
A Comparative Study of Machine Learning-based Approach for Network Traffic Classification Kien Trang; An Hoang Nguyen
Knowledge Engineering and Data Science Vol 4, No 2 (2021)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v4i22021p128-137

Abstract

Internet usage has increased rapidly and become an essential part of human life, corresponding to the rapid development of network infrastructure in recent years. Thus, protecting users’ confidential information when joining the global network becomes one of the most significant considerations. Even though multiple encryption algorithms and techniques have been applied in different parties, including internet providers, and web hosting, this situation also allows the hacker to attack the network system anonymously. Therefore, the significance of classifying network data streams to improve network system quality and security is attracting increasing study interests. This work introduces a machine learning-based approach to find the most suitable training model for network traffic classification tasks. Data pre-processing is first applied to normalize each feature type in the dataset. Different machine learning techniques, including k-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and Random Forest (RF), are applied based on the normalized features in the classification phase. An open-access dataset ISCXVPN2016 is applied for this research, which includes two types of encryption (VPN and Non-VPN) and seven classes of traffic categories classes. Experimental results on the open dataset have shown that the proposed models have reached a high classification rate – over 85% in some cases, in which the RF model obtains the most refined results among the three techniques.
A Comprehensive Analysis of Reward Function for Adaptive Traffic Signal Control Abu Rafe Md Jamil; Naushin Nower
Knowledge Engineering and Data Science Vol 4, No 2 (2021)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v4i22021p85-96

Abstract

Adaptive traffic control systems (ATCS) can play an important role to reduce traffic congestion in urban areas. The main challenge for ATSC is to determine the proper signal timing. Recently, Deep Reinforcement learning (DRL) is used to determine proper signal timing. However, the success of the DRL algorithm depends on the appropriate reward function design. There exist various reward functions for ATSC in the existing research.  In this research, a comprehensive analysis of the widely used reward function is presented. The pros and cons of various reward algorithms are discussed and experimental analysis shows that multi-objective reward function enhances the performance of ATSC.
Stress Classification using Deep Learning with 1D Convolutional Neural Networks Abdulrazak Yahya Saleh; Lau Khai Xian
Knowledge Engineering and Data Science Vol 4, No 2 (2021)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v4i22021p145-152

Abstract

Stress has been a major problem impacting people in various ways, and it gets serious every day. Identifying whether someone is suffering from stress is crucial before it becomes a severe illness. Artificial Intelligence (AI) interprets external data, learns from such data, and uses the learning to achieve specific goals and tasks. Deep Learning (DL) has created an impact in the field of Artificial Intelligence as it can perform tasks with high accuracy. Therefore, the primary purpose of this paper is to evaluate the performance of 1D Convolutional Neural Networks (1D CNNs) for stress classification. A Psychophysiological stress (PS) dataset is utilized in this paper. The PS dataset consists of twelve features obtained from the expert. The 1D CNNs are trained and tested using 10-fold cross-validation using the PS dataset. The algorithm performance is evaluated based on accuracy and loss matrices. The 1D CNNs outputs 99.7% in stress classification, which outperforms the Backpropagation (BP), only 65.57% in stress classification. Therefore, the findings yield a promising outcome that the 1D CNNs effectively classify stress compared to BP. Further explanation is provided in this paper to prove the efficiency of 1D CNN for the classification of stress. 
Parallel Approach of Adaptive Image Thresholding Algorithm on GPU Adhi Prahara; Andri Pranolo; Nuril Anwar; Yingchi Mao
Knowledge Engineering and Data Science Vol 4, No 2 (2021)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v4i22021p69-84

Abstract

Image thresholding is used to segment an image into background and foreground using a given threshold. The threshold can be generated using a specific algorithm instead of a pre-defined value obtained from observation or experiment. However, the algorithm involves per pixel operation, histogram calculation, and iterative procedure to search the optimum threshold that is costly for high-resolution images. In this research, parallel implementations on GPU for three adaptive image thresholding methods, namely Otsu, ISODATA, and minimum cross-entropy, were proposed to optimize their computational times to deal with high-resolution images. The approach involves parallel reduction and parallel prefix sum (scan) techniques to optimize the calculation. The proposed approach was tested on various sizes of grayscale images. The result shows that the parallel implementation of three adaptive image thresholding methods on GPU achieves 4-6 speeds up compared to the CPU implementation, reducing the computational time significantly and effectively dealing with high-resolution images. 
Melanoma Classification based on Simulated Annealing Optimization in Neural Network Edi Jaya Kusuma; Ika Pantiawati; Sri Handayani
Knowledge Engineering and Data Science Vol 4, No 2 (2021)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v4i22021p97-104

Abstract

Technology development in image processing and artificial intelligence field leads to the high demand for smart systems, especially in the health sector. Cancer is one of the diseases that has the highest mortality cases around the world. Melanoma is one of the cancer types that appear caused by high exposure to UV light. The earliest the melanoma was identified, the higher the chance the patient can be recovered. Therefore, this study carries the melanoma detection based on BPNN optimized by a simulated annealing algorithm. This research utilizes PH2 dermoscopic image data which contains 200 color digital images in BMP format. The data is processed using color feature extraction techniques to identify the characteristics of each image according to the target data. The color space extraction used includes mean RGB, HSV, CIE LAB, YCbCr, and XYZ. The evaluation result showed that the BPNN-SA method was able to increase the accuracy performance in classifying skin cancer when compared to the original BPNN method with an overall average accuracy of 84.03%.
Similarity Identification of Large-scale Biomedical Documents using Cosine Similarity and Parallel Computing Merlinda Wibowo; Christoph Quix; Nur Syahela Hussien; Herman Yuliansyah; Faisal Dharma Adhinata
Knowledge Engineering and Data Science Vol 4, No 2 (2021)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v4i22021p105-116

Abstract

Document similarity computation is an important research topic in information retrieval, and it is a crucial issue for automatic document categorization. The similarity value is between 0 and 1, then the closest value to 1 is represented both documents is considered more relevant, vice versa. However, the large scale of textual information has created the problem of finding the relevance level between documents. Therefore, the relevance between mesh heading text in the PubMed documents is higher than the relevance of the abstract text in the PubMed documents. Furthermore, parallel computing is implemented to speed up the large-scale documents similarity identification process that automatically calculates in the PubMed application. The execution time of mesh heading is 15.447 seconds, and the timely execution of abstract is 74.191 seconds. The execution time of mesh heading is higher than abstract because abstract contains more words than mesh heading. This study has successfully identified the similarity between large-scale biomedical documents of the PubMed documents that implemented a cosine similarity algorithm. The result has shown that the cosine similarity of the mesh heading texts is higher than the abstract text in the form of a graph and table shown in the PubMed application. The cosine similarity is useful to measure the similarity between documents based on the TF*IDF calculation result.

Page 1 of 1 | Total Record : 8