cover
Contact Name
Aji Prasetya Wibawa
Contact Email
keds.journal@um.ac.id
Phone
+62818539333
Journal Mail Official
keds.journal@um.ac.id
Editorial Address
Semarang St. No 5, Malang, Indonesia
Location
Kota malang,
Jawa timur
INDONESIA
Knowledge Engineering and Data Science
ISSN : -     EISSN : 25974637     DOI : https://doi.org/10.17977
Knowledge Engineering and Data Science (2597-4637), KEDS, brings together researchers, industry practitioners, and potential users, to promote collaborations, exchange ideas and practices, discuss new opportunities, and investigate analytics frameworks on data-driven and knowledge base systems.
Articles 98 Documents
Opinion Analysis for Emotional Classification on Emoji Tweets using the Naïve Bayes Algorithm Siti Sendari; Ilham Ari Elbaith Zaeni; Dian Candra Lestari; Hanny Prasetya Hariyadi
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p50-59

Abstract

Opinion Analysis is a research study needed to social media, since the content could become a trending topic and has a significant impact on social life. One of the social media that have a big contribution to cyberspace and information development is Twitter. In the Twitter application, users can insert images that represent emotions, facial expressions, or icons. Emoji is a graphic symbol in the form of an image to express a thing, with the Emoji, a text can be read and understood according to its meaning because the image represents it. Of the several things that have been mentioned then, the researchers conducted research on the classification of tweet content based on the use of Emojis. This study aims to determine the emotional uses of Twitter in one period. Every tweet on the Twitter timeline, which contains both text and Emojis, will be classified according to several categories. The algorithm used was Naïve Bayes. It calculated the probability of Emoji tweet to obtain the text classification with Emojis. The results of the classification of emotions are grouped with three categories, namely "angry," "joy," and "sad," it showed that the category "joy" had become the emotional trend of Twitter users where Emojis (x1f60a) dominate the most. Meanwhile, the accuracy of the algorithm used to reach 90% with a 70:30 holdout technique.
Human Intestinal Condition Identification based-on Blended Spatial and Morphological Feature using Artificial Neural Network Classifier Ummi Athiyah; Arif Wirawan Muhammad; Ahmad Azhari
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p19-27

Abstract

Colon cancer is a type of disease that attacks the intestinal walls cell of humans. Colorectal endoscopic screening technique is a common step carried out by the health expert/gynecologist to determine the condition of the human intestine. Manual interpretation requires quite a long time to reach a result. Along with the development of increasingly advanced digital computing techniques, then some of the weaknesses of the manually endoscopic image interpretation analysis model can be corrected by automating the detection process of the presence or absence of cancerous cells in the gut. Identification of human intestinal conditions using an artificial neural network method with the blended input feature produces a higher accuracy value compared to the artificial neural network with the non-blended input feature. The difference in classifier performance produced between the two is quite significant, that is equal to 0.065 (6.5%) for accuracy; 0.074 (7.4%) for recall; 0.05 (5.0%) for precision; and 0.063 (6.3%) for f-measure.
Parallelization of Partitioning Around Medoids (PAM) in K-Medoids Clustering on GPU Adhi Prahara; Dewi Pramudi Ismi; Ahmad Azhari
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p40-49

Abstract

K-medoids clustering is categorized as partitional clustering. K-medoids offers better result when dealing with outliers and arbitrary distance metric also in the situation when the mean or median does not exist within data. However, k-medoids suffers a high computational complexity. Partitioning Around Medoids (PAM) has been developed to improve k-medoids clustering, consists of build and swap steps and uses the entire dataset to find the best potential medoids. Thus, PAM produces better medoids than other algorithms. This research proposes the parallelization of PAM in k-medoids clustering on GPU to reduce computational time at the swap step of PAM. The parallelization scheme utilizes shared memory, reduction algorithm, and optimization of the thread block configuration to maximize the occupancy. Based on the experiment result, the proposed parallelized PAM k-medoids is faster than CPU and Matlab implementation and efficient for large dataset.
Flood Prediction using Artificial Neural Networks: Empirical Evidence from Mauritius as a Case Study A. Zaynah Dhunny; Reena Hansa Seebocus; Zaheer Allam; Mohammad Yasser Chuttur; Muhammed Eltahan; Harsh Mehta
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p1-10

Abstract

Artificial Neural Networks (ANN) has been well studied for flood prediction. However, there is not enough empirical evidence to generalize ANN applicability to small countries with microclimates prevailing in a small geographical space. In this paper, we focus on the climatic conditions of Mauritius for which we seek to investigate the accuracy of using ANN to predict flooding using locally collected data from 11 meteorological stations spread across the country. The ANN model for flood prediction presented in this work is trained using 20,000 climate data records, collected over a period of two years for Mauritius. Our input climate features are minimum temperature, maximum temperature, rainfall and humidity and our output decision is „flood‟ or „no flood‟. Using ANN, we achieved an accuracy of 98% for flood prediction and hence, we conclude that ANN is indeed a good predictor for flood occurrence even for regions with predominantly microclimatic conditions.
Earthquake Magnitude and Grid-Based Location Prediction using Backpropagation Neural Network Bagus Priambodo; Wayan Firdaus Mahmudy; Muh Arif Rahman
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p28-39

Abstract

Earthquakes, a type of inevitable natural disaster, is responsible for the highest average death toll per year compared to other types of a natural disaster. Even though it is inevitable, but it can be anticipated to minimize damage and casualties, such as predicting the earthquake‘s magnitude using a neural network. In this study, a backpropagation algorithm is used to train the multilayer neural network to weekly predict the average magnitude of earthquakes in grid-based locations in Indonesia. Based on the findings in this research, the neural network is able to predict the magnitude of earthquakes in grid-based locations across Indonesia with a minimum error rate of 0.094 in 34.475 seconds. This best result is achieved when the neural network is trained for 210 epochs, with 16 neurons used in the input and output layer, one hidden layer consisted of 5 neurons and a learning rate of 0.1. This result showed backpropagation has pretty good generalization capability in order to map the relations between variables when mathematical function is not explicitly available.
Query Rewriting with Thesaurus-Based for Handling Semantic Heterogeneity in Database Integration I Made Riyan Adi Nugroho; I Wayan Budi Sentana
Knowledge Engineering and Data Science Vol 3, No 1 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i12020p11-18

Abstract

Nowadays, studies on handling semantic heterogeneity still become a challenge for researcher. Several methods have been used to solve these problems, one of which is query rewriting, implemented by rewriting a query into the latest one by using the selected schema. Semantic query rewriting needs a framework in order to identify the connection through the data schema sources. This line is used as a basis for scheme selection. Also, ontology is a model which often be used in these specific cases. The lack of ontology becomes a significant problem that usually seen. Therefore, this paper will describe an alternative framework in order to identify the link of semantic, which assisted by thesaurus.
Efficient Scheduling of Plantation Company Workers using Genetic Algorithm Wayan Firdaus Mahmudy; Andreas Pardede; Agus Wahyu Widodo; Muh Arif Rahman
Knowledge Engineering and Data Science Vol 3, No 2 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i22020p60-66

Abstract

Workers at large plantation companies have various activities. These activities include caring for plants, regularly applying fertilizers according to schedule, and crop harvesting activities. The density of worker activities must be balanced with efficient and fair work scheduling. A good schedule will minimize worker dissatisfaction while also maintaining their physical health. This study aims to optimize workers' schedules using a genetic algorithm. An efficient chromosome representation is designed to produce a good schedule in a reasonable amount of time. The mutation method is used in combination with reciprocal mutation and exchange mutation, while the type of crossover used is one cut point, and the selection method is elitism selection. A set of computational experiments is carried out to determine the best parameters’ value of the genetic algorithm. The final result is a better 30 days worker schedule compare to the previous schedule that was produced manually. 
Generating Javanese Stopwords List using K-means Clustering Algorithm Aji Prasetya Wibawa; Hidayah Kariima Fithri; Ilham Ari Elbaith Zaeni; Andrew Nafalski
Knowledge Engineering and Data Science Vol 3, No 2 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i22020p106-111

Abstract

Stopword removal necessary in Information Retrieval. It can remove frequently appeared and general words to reduce memory storage. The algorithm eliminates each word that is precisely the same as the word in the stopword list. However, generating the list could be time-consuming. The words in a specific language and domain must be collected and validated by specialists. This research aims to develop a new way to generate a stop word list using the K-means Clustering method. The proposed approach groups words based on their frequency. The confusion matrix calculates the difference between the findings with a valid stopword list created by a Javanese linguist. The accuracy of the proposed method is 78.28% (K=7). The result shows that the generation of Javanese stopword lists using a clustering method is reliable.
Do Missing Link Community Smell Affect Developers Productivity: An Empirical Study Toukir Ahammed; Sumon Ahmed; Mohammed Shafiul Alam Khan
Knowledge Engineering and Data Science Vol 4, No 1 (2021)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v4i12021p29-37

Abstract

Missing link smell occurs when developers contribute to the same source code without communicating with each other. Existing studies have analyzed the relationship of missing link smells with code smell and developer contribution. However, the productivity of developers involved in missing link smell has not been explored yet. This study investigates how productivity differs between smelly and non-smelly developers. For this purpose, the productivity of smelly and non-smelly developers of seven open-source projects are analyzed. The result shows that the developers not involved in missing link smell have more productivity than the developers involved in smells. The observed difference is also found statistically significant.
A Review of Accessing Big Data with Significant Ontologies Jumah Y.J Sleeman; Jehad Abdulhamid Hammad
Knowledge Engineering and Data Science Vol 3, No 2 (2020)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v3i22020p67-76

Abstract

Ontology Based Data Access (OBDA) is a recently proposed approach which is able to provide a conceptual view on relational data sources. It addresses the problem of the direct access to big data through providing end-users with an ontology that goes between users and sources in which the ontology is connected to the data via mappings. We introduced the languages used to represent the ontologies and the mapping assertions technique that derived the query answering from sources. Query answering is divided into two steps: (i) Ontology rewriting, in which the query is rewritten with respect to the ontology into new query; (ii) mapping rewriting the query that obtained from previous step reformulating it over the data sources using mapping assertions. In this survey, we aim to study the earlier works done by other researchers in the fields of ontology, mapping and query answering over data sources.

Page 3 of 10 | Total Record : 98