cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta pusat,
Dki jakarta
INDONESIA
Jurnal Sains & Teknologi Modifikasi Cuaca
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 566 Documents
PEMODELAN HIDROLOGI DENGAN MENGGUNAKAN WMS (WATERSHED MODELING SYSTEM), DAERAH KAJIAN DI DAS CILIWUNG HULU Prayoga, M. Bayu Rizky; Yananto, Ardila; Ratna P, Destianingrum
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 16, No 1 (2015): June 2015
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (666.039 KB) | DOI: 10.29122/jstmc.v16i1.2632

Abstract

Intisari  Permasalahan sumberdaya air dari hari ke hari semakin memburuk, baik kualitas maupun kuantitas air. DAS sebagai wadah dari berbagai komponen biosfer yang saling berinteraksi memegang peranan yang penting dalam siklus hidrologi dan fungsi penyediaan air. Berbagai macam model hidrologi telah dikembangkan, Model-model tersebut bisa digunakan untuk memecahkan permasalahan sumberdaya air tersebut. Salah satu model yang bisa digunakan adalah model rasional yang terdapat dalam Waterhsed Modeling System (WMS). Tujuan dari penelitian ini adalah untuk melakukan ekstraksi karakteristik DAS dan mengestimasi nilai debit puncak DAS Ciliwung Hulu berdasarkan nilai curah hujan beberapa kala ulang dengan menggunakan Watershed Modelling System. Dari hasil penelitian didapatkan bahwa karakteristik DAS yang dapat diekstraksi dengan menggunakan WMS adalah luas DAS, panjang sungai utama, kemiringan DAS, dan kemiringan aliran  sungai. Nilai koefisien aliran permukaan DAS Ciliwung Hulu adalah sebesar  0,72. Nilai intensitas hujan untuk kala ulang 2 tahun sebesar 117 mm/jam, kala ulang 5 tahun sebesar 135 mm/jam, kala ulang 10 tahun sebesar 143 mm/jam, kala ulang 25 tahun sebesar 152 mm/jam, kala ulang 50 tahun sebesar 157 mm/jam, dan kala ulang 100 tahun sebesar 162 mm/jam. Untuk nilai estimasi debit puncak di DAS Ciliwung Hulu, untuk kala ulang 2 tahun sebesar 735, 588 m3/detik, untuk kala ulang 5 tahun sebesar 852,713 m3/detik, untuk kala ulang 10 tahun sebesar 904,363 m3/detik, untuk kala ulang 25 tahun sebesar 959,448 m3/detik, untuk kala ulang 50 tahun sebesar 992,448 m3/detik dan untuk kala ulang 100 tahun sebesar 1.023,313 m3/detik.Abstract  Water resources problems are getting worse from by the day, both the quality and quantity of water. Watershed as a container of various components of the interacting biosphere is playing an important role in the hydrological cycle and water supply functions. Various kinds of hydrological models have been developed. The models can be used to help solving the water resources problems. One of models that can be used are contained in Watershed Modeling System (WMS) is Rational Method. The purpose of this study was to perform the extraction of watershed characteristics and estimate the peak discharge in Ciliwung Hulu Watershed based on the value of rainfall in some return period by using the Watershed Modeling System. The results of study show that the characteristics of the watershed that can be extracted by using WMS are watershed area, main stream length, the slope of the watershed, and the slope of the river. Runoff coefficient value of Ciliwung Hulu Watershed is 0,72. Rainfall intensity value for 2-year return period is 117 mm/h, when the 5-year return period is 135 mm/h, when the 10-year return period is 143 mm/h, when the 25-year return period is 152 mm/h, when the 50-year return periods 157 mm/h, and when 100-year return period is 162 mm/hour. For the estimated value of the peak discharge in Ciliwung Hulu watershed for 2-year return period amounted to 735,588 m3/sec, for 5-year return period amounted to 852,713 m3/sec, for a 10-year return period amounted to 904,363 m3/sec, for a 25 year return period amounted to 959,448 m3/sec, for 50-year return period amounted to 992,448 m3/sec and for 100 years return period amounted to 1023,313 m3/sec.
TEKNOLOGI MODIFIKASI CUACA YANG EFEKTIF DAN EFISIEN Haryanto, Untung
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 1, No 1 (2000): June 2000
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (175.691 KB) | DOI: 10.29122/jstmc.v1i1.2100

Abstract

Terdapat beberapa tahapan klasik yang selalu dilakukan pada kegiatan penyemaian yang dilaksanakan oleh UPT Hujan Buatan yaitu penentuan waktu pelaksanaan, penyiapan bahan semai (termasuk di dalamnya adalah produksi, mobilisasi, dan mempertahankan ukuran atau packing,). Ketika sudah berada di lapangan pelaksana dihadapkan pada penentuan atau pemilihan awan yang disemai dan teknik penyebarannya, waktu dan lokasi penyemaian dalam kaitannya dengan obyek awan. Pada tahap akhir, kegiatan yang dilakukan berupa evaluasi, yang sementara ini baru menggunakan teknik statistik. Teknik evaluasi statistik yang digunakan terkadang tidak berhasil mendeteksi tambahan curah hujan baik pada jaringan penakar hujan ataupun tambahan inflow pada sistem catchment. Dari beberapa tahapan tersebut, beberapa diantaranya kerapkali dirasa sebagai kendala baik dari sisi pandang user maupun pelaksana karena tidak "efektif dan efisien". Salah satu hal yang sering dipersalahkanadalah cuaca : angin yang kuat, tidak ada awan potensial. Dari tinjauan proses hujanyang terjadi di dalam awan, dasar ilmiah manipulasi proses, dan dipadukan denganstatus teknologi modifikasi cuaca yang dilaksanakan beberapa tempat di dunia hinggatahun 1999, disimpulkan bahwa teknologi modifikasi cuaca yang efektif dan efisien dapat dicapai melalui dua pendekatan yaitu pertama menjadikan teknologi modifikasi cuaca sebagai bagian integral pengelolaan sumberdaya air, dan kedua menerapkan pemakaian "new cloud seeding device", serta pemakaian sarana yang sesuai untuk kebutuhan operasional.There were some classical operational steps on each cloud seeding operational carriedout by UPT Hujan Buatan that was determine the initial of operatianal day, preparing and handling seeding agent, and the last was overall evaluation. During the opereational day, incharge person on the field should be decided when he must seed and where, which cloud to be choosed, and how much seeding agent must be injected into the cloud on the right time and the right place. Some time, the evaluation based on statistical could not detect the additioal rainfall or river disharge on catchment. Some of those steps looks like in view of user or operator as costraint because its inefective and ineficient. The frequent of unfavourable weather and strong wind during operational day caused the absence of potential cloud. Base on rain process knowledge and its manipulation it was concluded that an efective and eficient cloud seeding operatioanal could be reached by two aproached that is firstly: carried out the cloud seeding operational as an integral part of water resources management, and secondly : by using a "new cloud seeding device", and using the proper tools and equipment for operational.
PEMBAGIAN IKLIM INDONESIA BERDASARKAN POLA CURAH HUJAN DENGAN METODA “DOUBLE CORRELATION” Aldrian, Edvin
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 2, No 1 (2001): June 2001
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (594.596 KB) | DOI: 10.29122/jstmc.v2i1.2142

Abstract

Pembagian wilayah atau region iklim Indonesia berdasarkan pola curah hujan tahunandibahas disini. Sebuah metoda yang dinamakan metoda ?double correlation? diperkenalkan untuk tujuan di atas. Dengan metoda regionalisasi yang dipakai dihasilkan tiga region iklim berdasarkan pola curah hujan tahunan. Region pertama adalah region A yang terletak di wilayah selatan Indonesia yang disebut region monsun Australia karena region ini lebih banyak dipengaruhi oleh monsun Australia. Region kedua adalah region B di wilayah barat laut Indonesia, yang disebut sebagai region monsun passat tenggara karena dipengaruhi oleh monsun ini. Region terakhir adalah region C atau region arus lintas laut Indonesia (arlindo) karena terletak pada daerah aliran arlindo. Pola hasil dari regionalisasi ini dibandingkan dengan pola pada region yang sama pada keluaran model reanalisa ECMWF dan ECHAM.A regionalization of Indonesian climate based on its annual rainfall patterns has been done. A new method called the ?double correlation method? was introduced and used for such purpose. With this regionalization method there are three climate regions based on their annual rainfall patterns. The first region or region A lies in south Indonesia and is called the Australian monsoon region because it is much affected by the Australian monsoon. The second region or region B lies in northwest Indonesia, which is called as the NE Passat region because it is much affected by that monsoon. The last region or region C lies over the Indonesian Throughflow and is called as the Indonesian Throughflow region. Patterns resulted from this regionalization method are compared to those of their corresponding regions from the output of ECMWF reanalysis and a Global Circulation Model ECHAM.
PERFORMA KONVERGENSI ANGIN PERMUKAAN DIURNAL MODEL REANALISIS ERA5 DI BENUA MARITIM INDONESIA Rais, Achmad Fahruddin; Soenardi, Soenardi; Fanani, Zubaidi; Surgiansyah, Pebri
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 20, No 2 (2019): December 2019
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1991.715 KB) | DOI: 10.29122/jstmc.v20i2.3795

Abstract

IntisariPada penelitian ini, penulis mengkaji uji performa kualitatif konvergensi angin permukaan model reanalisis ERA5 di BMI yang dibandingkan dengan hasil penelitian menggunakan limited area model (LAM) oleh Qian, Im dan Eltahir serta Alfahmi et al. Konvergensi angin permukaan dan anomali angin permukaan dihitung dengan menggunakan finite difference.  Hasil penelitian menunjukkan bahwa model reanalisis ERA5 mampu mensimulasikan konvergensi anomali angin permukaan dengan baik terhadap model regional climate model (RegCM) maupun The MIT regional climate model (MRCM) resolusi 27 km di Pulau Jawa dan sekitarnya serta BMI bagian barat dengan nilai konvergensi yang lebih tinggi. Sedangkan terhadap model weather research forecast (WRF) 9 km di BMI bagian timur, model reanalisis ERA5 juga dapat mensimulasikan konvergensi angin permukaan, tetapi dengan nilai yang lebih rendah. Selain itu, model reanalisis ERA5 mensimulasikan konvergensi angin permukaan lebih cepat 2 jam di BMI bagian barat dan timur dibandingkan MRCM27 dan WRF. AbstractIn this study, we discuss the qualitative performance testing of ERA5 surface wind convergence over the Indonesia maritime continent (BMI) compared with research based on limited area model (LAM) by Qian, Im, and Eltahir and also Alfahmi et al. Wind surface convergence and wind surface anomalies convergence is calculated using finite-difference. The results show that the ERA5 reanalysis model can simulate convergence of surface wind anomalies compared with both regional climate model (RegCM) and 27 km MIT regional climate model (MRCM) over Java and also western BMI with higher convergence values. While ERA5 reanalysis model can also simulate convergence of surface winds, but with lower values compared to 9 km weather research forecast (WRF) model over eastern BMI. Besides, the ERA5 reanalysis model simulates convergence of surface winds, which is 2 hours faster over western and eastern BMI compared to MRCM27 and WRF.
KAJIAN SEA SURFACE TEMPERATURE (SST), SOUTHERN OSCILLATION INDEX (SOI) DAN DIPOLE MODE PADA KEGIATAN PENERAPAN TEKNOLOGI MODIFIKASI CUACA DI PROPINSI RIAU DAN SUMATERA BARAT JULI – AGUSTUS 2009 Syaifullah, M Djazim
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 11, No 1 (2010): June 2010
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1173.348 KB) | DOI: 10.29122/jstmc.v11i1.2175

Abstract

Kajian suhu muka laut, SOI dan Dipole Mode Index (DMI) telah dilakukan untuk melihatpengaruh global terhadap kondisi pertumbuhan awan di daerah DAS Kotapanjang danSingkarak pada pelaksanaan Teknologi Modifikasi Cuaca (TMC) Juli ? Agustus 2009.Data yang dipakai dalam penelitian ini adalah data Sea Surface Temperature (SST)yang diambil dari University Corporation for Athmospheric Research (UCAR). suhumuka laut yang dianalisis adalah daerah Nino dan daerah Sumatera bagian barat. Darihasil analisis terlihat bahwa selama kegiatan TMC nilai anomali SST untuk keempatdaerah Nino (Nino12, Nino3, Nino34 dan Nino4) adalah positif, hal ini menunjukkanbahwa selama kegiatan TMC kondisi global sudah memasuki fase ElNino meskipunbelum begitu kuat. Sedangkan di wilayah Sumatera bagian barat secara umum sejakawal bulan April 2009 nilai suhu muka laut berada di atas rerata dari normalnya (anomali positif). Dilihat dari nilai SOI secara umum berada pada kisaran normal. Hasil analisis menunjukkan bahwa selama kegiatan TMC kondisi atmosfer kedua DAS cukup kering dan sangat sulit untuk mendapatkan awan-awan yang potensial untuk disemai. Study of sea surface temperature, SOI and dipole mode indices (DMI), was held to seeglobal influence conditions of cloud growth in Kotapanjang and Singkarak catchment on the cloud seeding project from July to August 2009. The data used in this study was sea surface temperature (SST), taken from University Corporation Athmospheric research(UCAR). The sea surface temperature was analysed in Nino12 regions and Westernregion of Sumatra. Based on the analysis shows that during cloud seeding period thesea surface temperature anomaly for the four regions of Niño (Niño2 Niño3, Niño34and Niño4) is positive, while in the western of Sumatra in general since the beginning ofApril 2009 the sea temperature was higher than normal. This indicates that during cloudseeding period global condition has entered a stage of Elnino, although not so strong.The soi is generally in the range of normal. The analysis showed that during the cloudseeding period either watershed atmospheric conditions dry enough and very difficult toget a potential cloud for sowing.
METODE PENCUPLIKAN NILAI ECHO CITRA RADAR *.PNG DENGAN REFERENSI SPASIAL DAN KOMBINASI WARNA RGB Purwadi, Purwadi; Fitriano, Lutfi
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 18, No 1 (2017): June 2017
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (552.733 KB) | DOI: 10.29122/jstmc.v18i1.2043

Abstract

IntisariData meteorologi yang berupa citra/gambar sulit dianalisis dan dikombinasikan dengan data lain. Dalam tulisan ini akan dijelaskan metode pencuplikan citra/gambar radar yang dipublikasikan oleh BMKG menjadi data teks. Proses pengolahan terdiri dari dua tahap yaitu proses pemetaan setiap pixel dalam citra radar menjadi koordinat bumi (latitude dan longitude) dan penentuan nilai echo radar (dBZ). Dari legenda pada citra radar didapatkan 9 pola warna RGB yang digunakan sebagai penentu nilai dBZ setiap pixel dalam citra radar. Hasil pengolahan citra radar berupa data teks yang terdiri dari longitude, latitude, dan nilai dBZ. Untuk membandingkan dengan data asli, data radar teks hasil pengolahan ditampilkan pada Website Global Informasion System (WebGIS). Warna data radar pada WebGIS ditentukan dengan persamaan warna sebagai fungsi dari nilai dBZ. Secara kualitatif, hasil perbandingan gambar radar asli dengan data numerik yang ditampilkan pada WebGIS menunjukkan bahwa hasil data numerik cukup presisi pada posisi longitude dan latitude. Namun, dari segi nilai numerik echo radar (dBZ) yang dihasilkan terdeteksi kurang akurat pada batas awan karena latar belakang gambar yang berwarna hitam.   AbstractMeteorological data in the form of image has difficulty in further analysis such as to combine the data with other data sources. In this research, the proposed method for converting image data into texts using image processing for BMKG data provided is presented. The processing scenarios consist of two main steps; mapping process of every pixel of the images into the earth coordinate (latitude and longitude) step and radar echo values estimation in dBZ step. From the analysis, the 9 color patterns of RGB are obtained and used as the dBZ justification tool for the pixel color of radar image. The results of this image processing step are the texts data of latitude, longitude and the radar echo values in dBZ. In order to compare the analysis results with the original data, the processing data are then reshown to global information system website (WebGIS). The radar color data on WebGIS is determined based on color equation as a function of the echo radar. Qualitatively, the results of this comparison show that the numerical data results are precise in terms of longitude and latitude positions. However, in terms of numerical values echo radar (dBZ), the results perform less accurate especially on the boundary of the cloud due to the black color of background image.  
PERBANDINGAN PROFIL HUJAN VERTIKAL RADAR CUACA DENGAN MICRO RAIN RADAR SELAMA KEJADIAN HUJAN SEDANG (STUDI KASUS : INTENSIVE OBSERVATION PERIOD 2016) Tikno, Sunu; Yahya, Rino Bahtiar; Syafira, Sara Aisyah
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 17, No 2 (2016): December 2016
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (801.164 KB) | DOI: 10.29122/jstmc.v17i2.536

Abstract

IntisariMicro Rain Radar (MRR) merupakan suatu instrumen pengamatan hujan, yang beroperasi secara vertikal. Sementara itu, radar cuaca WR-2100 biasa digunakan untuk membuat suatu profil yang berupa cakupan area.  Akan tetapi, dengan pengolahan lebih lanjut, data suatu radar cuaca seperti radar cuaca WR-2100 tersebut juga dapat digunakan untuk menampilkan profil vertikal salah satu parameternya di suatu lokasi tertentu. Penelitian kali ini membandingkan profil vertikal hujan di Dramaga, Bogor berdasarkan nilai rain rate nya yang diperoleh dari MRR yang beroperasi secara langsung di lokasi tersebut dengan profil serupa yang diperoleh dari radar cuaca WR-2100 yang beroperasi di lokasi berbeda, yaitu di Serpong, Tangerang Selatan. Hasil penelitian menunjukan bahwa kedua instrumen tersebut mendeteksi adanya nilai rain rate pada waktu-waktu yang bersamaan, namun dengan nilai yang lebih tinggi oleh radar cuaca WR-2100 untuk lapisan-lapisan yang lebih tinggi, yang terutama diduga karena atenuasi yang lebih besar dan signifikan yang terjadi pada proses pengukuran oleh MRR untuk lapisan-lapisan yang lebih tinggi pada saat kejadian-kejadian hujan sedang.  AbstractMicro Rain Radar (MRR) is an instrument to observe precipitation, especially rainfall, that operate vertically. Besides, a weather radar, WR-2100, is an instrument making profile in an area scope. By doing further processing, data of weather radar WR-2100 can be used to show vertical profile of a certain parameter in a certain location. This study compared vertical profile of rain rate at Dramaga, Bogor, based on data of MRR operated in same location with that based on data of weather radar WR-2100 operated in different location, which is Serpong, Tangerang Selatan. Results of the study showed that both instruments detected rain rate values on same times, while the values are higher at higher altitudes for weather radar WR-2100 than for MRR due to higher and more significant attenuation happened in MRR operation at higher altitude in moderate rainfall events. 
ANALISIS ANGIN ATAS DI WILAYAH JAWA BAGIAN BARAT SELAMA KEGIATAN TMC REDISTRIBUSI CURAH HUJAN Mulyana, Erwin
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 14, No 1 (2013): June 2013
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (273.679 KB) | DOI: 10.29122/jstmc.v14i1.2681

Abstract

IntisariTelah dilakukan analisis angin pada berbagai level ketinggian pada saat penerapan TMC yang dilakukan pada tanggal 26 Januari s.d 27 Februari 2013. Data yang digunakan adalah data angin tiga jam-an MERRA (1.25o x 1.25o), data angin harian NCEP (2.5o x 2.5o) serta angin gradient dari BOM Australia. Selama kegiatan, angin baratan mendominasi wilayah Jawa bagian barat. Arah angin di Jawa bagian barat sangat dipengaruhi oleh gangguan tropis yang muncul di Samudera Hindia sebelah selatan Indonesia. Terjadi pembalikan arah angin dari angin baratan menjadi angin timuran akibat pengaruh Siklon Tropis Gino di sebelah barat daya Sumatera. Kecepatan angin pada akhir kegiatan mencapai 20 m/s akibat pengaruh Siklon Tropis Rusty di sebelah barat Australia.AbstractThe Application of weather modification has carried out to redistribute  precipitation over Jakarta and the surrounding on 26 January to 27 February 2013. Data used in this study are 3 hourly MERRA wind data (1.25o x 1.25o), daily NCEP wind data (2.5o x 2.5o), and gradient wind analysis data from BOM Australia. The westerly wind dominated over western part of Java.The wind direction in the western part of Java is strongly influenced by the tropical disturbance in the Indian Ocean south of Indonesia. The Tropical Cyclone Gino over Southwest Sumatera caused easterly wind over west part of Jawa. The wind speed up to 20 m/s due to the effect of Tropical Cyclone Rusty in the west of Australia.
PEMODELAN KONDISI UDARA ATAS DENGAN BACK-PROPAGATION NEURAL NETWORK DAN PEMANFAATANNYA UNTUK PENENTUAN HARI SEMAI Kudsy, Mahally
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 1, No 2 (2000): December 2000
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (42.917 KB) | DOI: 10.29122/jstmc.v1i2.2126

Abstract

Jaringan syaraf buatan dengan penyebaran ke belakang dipakai untuk memodelkan hubungan parameter udara atas yang dihasilkan dengan rawinsonde dengan kelayakanhari semai. Data rawinsonde dari periode 1995-1999 dari Semarang dan Bandungdipakai untuk melatih jaringan. Jaringan terdiri dari 10 buah simpul pada layer input, 40simpul pada layer tersembunyi dan 2 buah simpul pada layer output. Jumlah simpul yang optimal pada layer tersembunyi untuk memodelkan 10 parameter udara atas adalah 40 buah. Banyaknya iterasi yang optimal untuk mencapai konvergensi dengan kesalahan rata-rata kuadrat 0.05 adalah 700 kali. Jaringan yang dihasilkan dapat menghasilkan prakiraan kelayakan hari semai atau tidak dengan tingkat ketelitian yang lebih besar dari 75%.A back -propagation artificial neural network was used to model the relationship between upper-air parameters obtained by rawinsonde and the seeding day favorability. A series of data obtained from rawinsonde launched at Semarang and Bandung from 1995-1999 period was used as input or training data. The network comprised of 10, 40 and 2 simpuls located at the input, hidden and output layers respectively. The optimum number of hidden units of this network was 40. The training iteration required to reach convergence with RMS error of 0.05 was 700. The network resulted can predict the seeding favorability greater than 75% accuracy.
UJI AKURASI PRODUK ESTIMASI CURAH HUJAN SATELIT GPM IMERG DI SURABAYA, INDONESIA Azka, Mukhamad Adib; Sugianto, Prabu Aditya; Silitonga, Andreas Kurniawan; Nugraheni, Imma Redha
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 19, No 2 (2018): December 2018
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (455.914 KB) | DOI: 10.29122/jstmc.v19i2.3153

Abstract

Curah hujan merupakan parameter meteorologi yang sangat berpengaruh dalam kehidupan. Saat ini, pengamatan secara in situ sangat kurang representatif untuk digunakan sebagai analisis karena jangkauannya yang sangat sempit sehingga memerlukan instrumen pendukung seperti satelit agar dapat memberikan gambaran yang lebih baik terkait distribusi hujan. Namun, data satelit juga belum tentu sepenuhnya benar karena resolusi dan kondisi dari setiap wilayah berbeda. Penelitian ini bertujuan untuk mendapatkan nilai akurasi, bias, korelasi, root mean square error (RMSE), dan mean absolute error (MAE) data estimasi curah hujan GPM IMERG dengan data curah hujan pengamatan langsung. Penelitian ini dilakukkan di Surabaya dengan menggunakan data estimasi curah hujan GPM IMERG dan data curah hujan pengamatan langsung dari Stasiun Meteorologi Kelas I Juanda Surabaya selama tahun 2017 mewakili musim hujan, musim kemarau, dan periode transisi. Hasil penelitian menunjukkan bahwa data curah hujan produk GPM IMERG memiliki korelasi yang sangat baik untuk memperkirakan akumulasi curah hujan bulanan. Sedangkan, untuk akumulasi harian, memiliki korelasi yang sangat rendah. Sementara itu untuk akumulasi sepuluh harian, data curah hujan produk satelit GPM IMERG memiliki korelasi yang baik terutama di periode musim hujan dan musim kemarau, akan tetapi memiliki korelasi yang rendah selama periode transisi dari musim hujan ke musim kemarau atau sebaliknya. Pada umumnya, produk ini sangat bagus dalam menentukan ada atau tidaknya hujan, tetapi performanya sangat rendah dalam menentukan besarnya intensitas curah hujan.

Filter by Year

2000 2022


Filter By Issues
All Issue Vol. 23 No. 2 (2022): December 2022 Vol. 23 No. 1 (2022): June 2022 Vol. 22 No. 2 (2021): December 2021 Vol. 22 No. 1 (2021): June 2021 Vol. 21 No. 2 (2020): December 2020 Vol. 21 No. 1 (2020): June 2020 Vol 20, No 2 (2019): December 2019 Vol. 20 No. 2 (2019): December 2019 Vol. 20 No. 1 (2019): June 2019 Vol 20, No 1 (2019): June 2019 Vol 19, No 2 (2018): December 2018 Vol. 19 No. 2 (2018): December 2018 Vol 19, No 1 (2018): June 2018 Vol 19, No 1 (2018): June 2018 Vol. 19 No. 1 (2018): June 2018 Vol 19, No 2 (2018) Vol. 18 No. 2 (2017): December 2017 Vol 18, No 2 (2017): December 2017 Vol 18, No 2 (2017): December 2017 Vol 18, No 1 (2017): June 2017 Vol. 18 No. 1 (2017): June 2017 Vol 18, No 1 (2017): June 2017 Vol 17, No 2 (2016): December 2016 Vol. 17 No. 2 (2016): December 2016 Vol 17, No 2 (2016): December 2016 Vol 17, No 1 (2016): June 2016 Vol. 17 No. 1 (2016): June 2016 Vol 17, No 1 (2016): June 2016 Vol 16, No 2 (2015): December 2015 Vol. 16 No. 2 (2015): December 2015 Vol 16, No 2 (2015): December 2015 Vol 16, No 1 (2015): June 2015 Vol 16, No 1 (2015): June 2015 Vol. 16 No. 1 (2015): June 2015 Vol. 15 No. 2 (2014): December 2014 Vol 15, No 2 (2014): December 2014 Vol 15, No 2 (2014): December 2014 Vol. 15 No. 1 (2014): June 2014 Vol 15, No 1 (2014): June 2014 Vol 15, No 1 (2014): June 2014 Vol 14, No 2 (2013): December 2013 Vol. 14 No. 2 (2013): December 2013 Vol 14, No 2 (2013): December 2013 Vol 14, No 1 (2013): June 2013 Vol 14, No 1 (2013): June 2013 Vol. 14 No. 1 (2013): June 2013 Vol. 13 No. 2 (2012): December 2012 Vol 13, No 2 (2012): December 2012 Vol 13, No 2 (2012): December 2012 Vol 13, No 1 (2012): June 2012 Vol. 13 No. 1 (2012): June 2012 Vol 13, No 1 (2012): June 2012 Vol 12, No 2 (2011): December 2011 Vol 12, No 2 (2011): December 2011 Vol. 12 No. 2 (2011): December 2011 Vol 12, No 1 (2011): June 2011 Vol 12, No 1 (2011): June 2011 Vol. 12 No. 1 (2011): June 2011 Vol 11, No 2 (2010): December 2010 Vol. 11 No. 2 (2010): December 2010 Vol 11, No 2 (2010): December 2010 Vol. 11 No. 1 (2010): June 2010 Vol 11, No 1 (2010): June 2010 Vol 11, No 1 (2010): June 2010 Vol. 3 No. 2 (2002): December 2002 Vol 3, No 2 (2002): December 2002 Vol 3, No 2 (2002): December 2002 Vol 3, No 1 (2002): June 2002 Vol 3, No 1 (2002): June 2002 Vol. 3 No. 1 (2002): June 2002 Vol 2, No 1 (2001): June 2001 Vol. 2 No. 1 (2001): June 2001 Vol 2, No 1 (2001): June 2001 Vol 1, No 2 (2000): December 2000 Vol 1, No 2 (2000): December 2000 Vol. 1 No. 2 (2000): December 2000 Vol 1, No 1 (2000): June 2000 Vol 1, No 1 (2000): June 2000 Vol. 1 No. 1 (2000): June 2000 More Issue