cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta pusat,
Dki jakarta
INDONESIA
Jurnal Sains & Teknologi Modifikasi Cuaca
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 566 Documents
KAJIAN PENYEBARAN KABUT ASAP KEBAKARAN HUTAN DAN LAHAN DI WILAYAH SUMATERA BAGIAN UTARA DAN KEMUNGKINAN MENGATASINYA DENGAN TMC Bahri, Samsul
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 3, No 2 (2002): December 2002
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (147.827 KB) | DOI: 10.29122/jstmc.v3i2.2165

Abstract

Pada pertengahan bulan Maret 2002 kabut asap kebakaran hutan dan lahan yang melanda tanaman industri di kabupaten Bengkalis-Riau dan Labuhan Batu-Sumut telahmenyelimuti dua propinsi di Sumatera Bagian Utara yaitu Riau dan Sumut. Hasil kajian menunjukan bahwa penyebaran kabut asap tersebut sangat erat kaitannya dengan kondisi geograpi, angin, cuaca yang terjadi di wilayah tersebut. Didiskusikan kemungkinan penerapan Teknologi Modifikasi Cuaca (TMC) untuk mengatasi kabut asap tersebut.In the midle of March 2002 the smoke of forest fires of industrial plantation in Bengkalisand Labuhan Batu has covered two provinces in the Northern Sumatera including NorthSumatera and Riau. The result of study shows that the smoke dispersion has a direct correlation with geographical, wind, and weather conditions in the region. The possibility of applicatio n of the weather modification to overcome the smoke is discussed.
VARIASI HARIAN DAN TAHUNAN HUJAN DI SERPONG BERDASARKAN PENGAMATAN DENGAN MICRO RAIN RADAR Renggono, Findy
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 18, No 2 (2017): December 2017
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (798.178 KB) | DOI: 10.29122/jstmc.v18i2.2785

Abstract

IntisariKemampuan MRR untuk mengamati profil hujan sampai ketinggian di atas 7500m dapat digunakan untuk mengamati kemunculan jenis hujan. Dari parameter yang diperoleh dapat dibedakan menjadi dua jenis hujan, konvektif dan stratiform berdasarkan keberadaan brightband. Pengamatan kemunculan jenis hujan dengan MRR di Serpong menunjukkan bahwa hujan konvektif relatif muncul lebih banyak dibandingkan stratiform pada puncak musim kering, sedangkan pada musim hujan sebaliknya. Untuk variasi hariannya, puncak hujan konvektif muncul sekitar pukul 15.00-16.00 WIB sedangkan stratiform sekitar pukul 18.00 WIB.  AbstractThe ability of micorain radar to observe precipitation profiles up to 7500m height can be used to observe the precipitation types. Precipitation can be classified into two types of rain, convective and stratiform based on the existence of brightband. MRR observation in Serpong shows that convective rain relatively appears more than stratiform rain during the peak of the dry season, while in the rainy season vice versa. For daily variations, the peak of the convective rain appears at about 15.00-16.00 LT while the stratiform is around 18.00 LT. 
SIKLON TROPIS, KARASTERISTIK DAN PENGARUHNYA DI WILAYAH INDONESIA PADA TAHUN 2012 Syaifullah, M. Djazim
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 16, No 2 (2015): December 2015
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (999.283 KB) | DOI: 10.29122/jstmc.v16i2.1048

Abstract

Tulisan ini adalah sebuah dan analisis karasteristik dari siklon tropis termasuk proses siklus hidupnya, struktur, skala kekuatan dan bagaimana pengaruhnya di daerah Indonesia. Analisis siklon tropis dikhususkan untuk kejadian-kejadian di daerah Pasifik Barat dan Laut Cina Selatan. Salah satu pengaruh siklon tropis adalah munculnya hotspot di Sumatera dan Kalimantan. Siklon tropis adalah sebuah yang fenomena meteorologi yang dengan potensi besar dampak di area kerusakan yang dilaluinya. Siklon tropis mempunyai kekuatan yang sangat besar dan tidak ada usaha manusia yang dapat mencegah atau menghilangkan siklon tropis. Siklon Tropis mempunyai siklus mulai sejak saat pembentukannya sampai kepunahannya. Ada tiga tahap : tahap pembentukan, tahap matang dan tahap pelemahan. Indonesia secara umum mendapatkan pengaruh secara tidak langsung dari keberadaan siklon tropis ini, dimana pada musim kering ini akan memperparah bencana kekeringan di beberapa daerah di Indonesia khususnya di wilayah Kalimantan dan Sumatera.Kata Kunci: siklon tropis, kebakaran hutan, hotspotThis paper is an overview and analisys of tropical cyclone charasteristics consit of their life cycle processes, structures, scale of strength and how its influence in Indonesian region. Tropical cyclone analysis is devoted to the events in the Western Pacific region and the South China Sea. Observed influence of tropical cyclones is the emergence of hot spots in Sumatera and Kalimantan as well as it happened rains in some areas. The tropical cyclone is a meteorological phenomenon with huge potential impact on the area of damage in its path. Tropical cyclone strength was so big and there was no human effort that can prevent or eliminate a tropical cyclone. Tropical cyclones have a life cycle starting from the moment of its formation until its extinction. There are three stages : formation stage, mature stage and attenuation stage. Indonesia generally received indirect impact on changing weather conditions. In the dry season will increase the incidence of tropical cyclone severe drought level in the region of Indonesia, particularly Sumatera and Kalimantan and result in the emergence of the number of fires (hot spot) which is quite a lot. In the wet season tropical cyclone events can cause increased rainfall causes floods, especially in areas close to the location of the cyclone, for example in the area of the northern part of Kalimantan and Sulawesi.Keywords : tropical cyclone, forest fire, hotspot
KAJIAN PENENTUAN AWAL MUSIM DI DAERAH NON ZOM 14 RIAU DENGAN MENGGUNAKAN DATA CURAH HUJAN DAN HARI HUJAN Ardhitama, Aristya; Sholihah, Rias
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 15, No 2 (2014): December 2014
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (8834.499 KB) | DOI: 10.29122/jstmc.v15i2.2672

Abstract

IntisariDaerah Riau termasuk kedalam wilayah ZOM (Zona Musim) dan Non ZOM. Daerah Non ZOM merupakan daerah-daerah yang tidak mempunyai batas yang jelas secara klimatologis antara  periode musim hujan dan musim kemarau. Propinsi Riau memiliki wilayah Non ZOM 14 yang menurut teori tidak memilki perbedaan musim hujan dan musim kemarau. Dalam kajian penelitian ini penulis ingin membuktikan bahwa daerah Non ZOM 14 terdapat musim hujan dan musim kemarau. Data yang digunakan adalah data curah hujan (CH) dan hari hujan (HH) dasarian yang diambil dari stasiun daerah Dumai dan Sungai Pakning untuk menentukan Awal Musim. Dari hasil penelitian yang didapatkan daerah Non Zom 14 memiliki pola musim hujan dan musim kemarau yaitu awal musim kemarau yang pertama jatuh pada dasarian bulan Feb I sampai Feb III  dan terjadi kembali pada bulan Mei II sampai bulan Juli II diperoleh hari hujan sebesar ? 2(HH) dengan nilai CH sebesar 30 mm. Awal musim hujan yang pertama terjadi pada dasarian pada bulan Maret I sampai bulai Mei II, kemudian musim hujan kembali terjadi pada bulan Juli II sampai bulan Desember II yang diperoleh dari hari hujan ? 4 (HH) dengan batas CH sebesar 50mm diperoleh besar jumlah CH ? 100mm. Sehingga dapat disimpulkan untuk daerah Non ZOM 14 Riau dapat direkomendasikan menjadi daerah ZOM (Zona Musim).   AbstractRiau area included into the territory of ZOM (Season Zone) and Non ZOM. The Non ZOMS were areas that do not have a clear limit for climatologist between the period of rainy season and dry season. Riau Province has an area of 14 which according to Non ZOMS theory do not have differences in rainy season and dry season. In this research studies the author want to prove that the Non ZOMS 14 there is a rainy season and a dry season. The data used are the precipitation data (CH) and rainy day (HH) decade taken from local station in Dumai and Sungai Pakning to determine the start of the season. From the results obtained by research area Non Zoms 14 has the pattern of rainy season and dry season is the beginning of the dry season the first fell on the decade month of Feb I until Feb III and going back in May II until July II obtained a rainy day at ? 2 (HH) with CH value 30 mm. the Beginning of the rainy season the first one occurred at decade in March I until May II, later rainy season occurred in july II until december II obtained from rainy days ? 4 (HH) with limits of CH gained an enormous amount of CH 50 mm ? 100 mm. so it can be inferred for the Non ZOMS 14 Riau can be recommended to be ZOMS (zone seasons).
DETEKSI ES DAN HAIL DI ATMOSFER DENGAN RADAR POLARIMETRIK X-BAND FURUNO WR-2100 (STUDI KASUS: 24 JANUARI DAN 14 FEBRUARI 2016) Arbain, Ardhi Adhary; Sunarto, Faisal; Mulyana, Erwin
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 19, No 1 (2018): June 2018
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1108.554 KB) | DOI: 10.29122/jstmc.v19i1.2994

Abstract

Informasi keberadaan es di atmosfer sangat penting, tidak hanya untuk studi meteorologi, namun juga untuk kegiatan modifikasi cuaca maupun pengembangan sistem peringatan dini bencana hidrometeorologi. Pada makalah ini, kami mendemonstrasikan tiga teknik deteksi es dengan memanfaatkan observasi radar X-band polarimetrik Furuno WR-2100. Data Constant Altitude Plan Position Indicator (CAPPI) untuk parameter horizontal reflectivity (Zh), differential reflectivity (ZDR) dan specific differential phase (KDP) pada kejadian presipitasi konvektif di wilayah Banten dan Bogor tanggal 24 Januari dan 14 Februari 2016 dianalisis dengan menggunakan metode Hail Differential Reflectivity (HDR), metode konsistensi KDP (CM) dan metode fuzzy logic (FL). Produk data yang dihasilkan oleh ketiga metode tersebut saling dibandingkan secara horizontal pada ketinggian 500 meter, 2 kilometer dan 5 kilometer, serta secara vertikal hingga ketinggian 15 kilometer. Hasil analisis menunjukkan metode HDR paling sensitif dan konsisten untuk identifikasi es pada setiap level ketinggian, sedangkan metode FL dapat membedakan jenis es secara spesifik. Di sisi lain, rendahnya sensitivitas metode CM dalam penelitian ini menunjukkan tidak adanya konsentrasi es yang signifikan pada waktu observasi dan mengindikasikan metode tersebut lebih sensitif untuk deteksi jenis es dengan ukuran yang lebih besar.
ANALISIS HUJAN DENGAN BOUNDARY LAYER RADAR Renggono, Findy
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 3, No 1 (2002): June 2002
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (377.38 KB) | DOI: 10.29122/jstmc.v3i1.2156

Abstract

Boundary Layer Radar (BLR) merupakan sebuah L-band Doppler radar. BLR yang terletak di Serpong, merupakan program kerjasama pengamatan antara RASC Kyoto University, Jepang, BPPT dan LAPAN. Pada dasarnya BLR digunakan untuk mengamati dinamika atmosfir pada kondisi udara cerah dari permukaan sampai ketinggian 3 km. Pada tulisan ini akan ditunjukkan bahwa BLR dapat juga digunakan untuk mengamati hujan.Boundary Layer Radar is an L-band Doppler radar. BLR that located at Serpong, Indonesia (6°S, 107°E) is a collaborative program between RASC, Kyoto University, Japan, BPPT and LAPAN. Although this radar is basically designed to measure winds in clear-air. This study, however, shows that BLR can also be used to detect the rain drops.
MENGINTIP KONDISI CUACA PENYEBAB BANJIR BESAR DI DKI JAKARTA TANGGAL 25 OKTOBER 2010 Karmini, Mimin; Renggono, Findy
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 12, No 2 (2011): December 2011
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2560.688 KB) | DOI: 10.29122/jstmc.v12i2.2189

Abstract

DKI Jakarta dikejutkan dengan hujan deras pada jam 16:00 WIB. Genangan airlangsung terjadi akibat derasnya hujan. Hujan berlangsung sampai sekitar jam 20:00WIB. Dari data AWS di Jatiwaringin, curah hujan tertinggi sebesar 230 mm tercatatpada jam 16:00 WIB. Curah hujan sampai jam 19:00 WIB tercatat sebesar 650.60 mmatau intensitas 216.87 mm/jam untuk periode jam 16:00 s.d. 19:00 WIB. Beberapaindeks stabilitas, yang dihitung dari data rawinsonde jam 07:00 WIB, menunjukanpotensi terjadinya aktivitas konvektif yang bisa menghasilkan hujan deras. Beberapaindeks stabilitas yang menunjukan potensi terjadinya proses konvektif kuat adalah: LI(Lifted Index) = - 06; SI (Showalter Index) = - 0.7; K Index = 36.7; TT (Total Totals) =43.9. Kejadian hujan paling deras di kawasan barat DKI Jakarta sampai Tangerang.Genangan air hampir merata di DKI Jakarta dan Tangerang dengan ketinggian yangbervariasi antara 20 cm ? 100 cm.Jakarta was struck by torrential rain at 16:00 pm. Standing water caused by heavy rainoccured immediately. The rain lasted until around 20:00 pm. From the AWS measurement at Jatiwaringin, highest rainfall of 230 mm was recorded at 16:00 pm. Rainfall amount until 19:00 pm was recorded of about 650.60 mm, in other words rainfall intensity was about 216.87 mm/hour for the period of 16:00 ? 19:00 pm. Some stability indices, which is calculated from rawinsonde at 07:00 am showed the potential for convective activity which could produce heavy rain. Some stability indices that show strong potential for convective process are: LI (Lifted Index) = - 06; SI (Showalter Index) = - 0.7; K Index = 36.7; TT (Total Totals) = 43.9. The heaviest rainfall occured in the western region of Jakarta until Tangerang. Stagnant water is almost evenly in Jakarta and Tangerang with varying heights between 20 cm - 100 cm.
ANALISA KEJADIAN BANJIR DI KOTA SOLO APRIL 2015 Muttaqin, Alfan; Sibarani, Rini Mariana
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 16, No 1 (2015): June 2015
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1221.079 KB) | DOI: 10.29122/jstmc.v16i1.2637

Abstract

AbstrakBanjir sering dikaitkan dengan fenomena meteorologi yang terjadi dialam. Kota Solo diterjang banjir pada tanggal 22 April 2015. Fenomena meteorologi yang menyebabkan terjadinya banjir tersebut telah dianalisis pada tulisan ini. Analisa meteorologi meliputi Gradien wind, Citra Satelit, Curah hujan dan Peta daerah aliran sungai. Dari segi gradien wind ini terlihat adanya Tropikal Siklon yang berada di Samudra Hindia sebelah selatan Pulau Jawa yang mulai tumbuh pada tanggal 19 April 2015. Tropikal siklon ini sangat mempengaruhi pola angin yang melewati daerah Jawa Tengah dan Yogyakarta, sehingga didaerah itu terbentuk daerah belokkan angin. Hujan yang terjadi sejak tanggal 19 April 2015 menyebabkan material tanah mengalami keadaan jenuh. Tanggal 22 April 2015 awan - awan potensial hujan tebentuk secara merata di daerah Jateng dan Yogyakarta sehingga menyebabkan hujan deras dalam durasi yang cukup lama. Curah hujan yang tinggi didaerah lereng gunung merapi menyebabkan air limpasan masuk kedaerah disekitarnya termasuk Yogyakarta, Boyolali, Sukoharjo dan Solo. Banjir yang terjadi tidak hanya dari hujan lokal namun juga air limpasan dari lereng gunung merapi.
AWAN HUJAN DI SERPONG : PENGAMATAN DENGAN BOUNDARY LAYER RADAR Renggono, Findy
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 1, No 1 (2000): June 2000
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (90.861 KB) | DOI: 10.29122/jstmc.v1i1.2105

Abstract

Kebanyakan kejadian hujan di Serpong, Indonesia (6.4°S, 106.7°E) terjadi setelah lewat tengah hari, walaupun demikian hasil pengamatan dengan penakar hujan otomatis selama 6 tahun menunjukkan adanya puncak hujan di pagi hari. Dari struktur awannyayang dipantau oleh BLR menunjukkan bahwa awan di pagi hari yang muncul adalahkebanyakan dari jenis awan Stratiform. Pada tulisan ini akan disajikan kajian statistik dari jenis awan yang muncul di wilayah ini.Most of the precipitation in Serpong (6.4°S, 106.7°E), Indonesia were occurred in the afternoon, however from the 6 years observation by using automatic rain gauge shows another peak of precipitation in the morning. In this paper, the vertical structure of theprecipitating cloud appeared in this area will be analyzed statistically using the data from Boundary Layer Radar (BLR) observation. The result shows that for the morning precipitation, the occurrence of the stratiform-type clouds were dominant.
KARASTERISTIK CURAH HUJAN DAN ALIRAN DAS LARONA KABUPATEN LUWU TIMUR SULAWESI SELATAN Syaifullah, Djazim
Jurnal Sains & Teknologi Modifikasi Cuaca Vol 14, No 2 (2013): December 2013
Publisher : BPPT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (11652.464 KB) | DOI: 10.29122/jstmc.v14i2.2687

Abstract

IntisariKarasteristik curah hujan dan aliran DAS Larona telah dilakukan dengan menggunakan data curah hujan dan aliran (inflow). Data curah hujan 7 buah stasiun data bulanan dan harian 10 sampai 29 tahun dan 8 buah stasiun penakar otomatis untuk mendapatkan data jam-jaman. Nilai inflow biasanya dihitung berdasarkan data outflow. Hasilnya menunjukkan bahwa daerah di sekitar Mahalona, bagian tenggara Matano dan bagian Barat Laut Towuti mempunyai konsentrasi curah hujan yang paling besar. DAS ini masuk musim kering pada bulan Agustus dan September, sementara bulan bulan yang lain termasuk bulan basah. Curah Hujan bulanan maksimum terjadi pada bulan April dengan nilai sekitar 360 mm, sedangkan curah hujan bulanan minimum terjadi pada bulan September sekitar 105 mm. DAS Larona didominasi oleh hujan ringan (kurang dari 5 mm dalam satu harinya) dengan durasi hujan  dominan kurang dari 1 jam (rata-rata sekitar 47 % dari total kejadian hujan). Dari nilai koefisien aliran yang berkisar 0.6 menunjukkan bahwa DAS Larona masih berada pada kondisi moderate dalam hal sebagai reservoir air  AbstractPrecipitation and flow charasteristics of the Larona watershed was conducted by use of the rainfall and inflow data. There are monthly and daily rainfall data 10 until 29 year long for 78 automatic rainfall stations. The value of inflow was calculated based on outflow.The results show that the region around Mahalona, the southeastern of Matano and part of Northwest of Towuti have the most concentration of rainfall. This Catchment came into rainy season on August until September, while other month in the rainy season. Maximum monthly rainfall occurs in april with the value of around 360 mm, while the minimum monthly rainfall happened in september around 105 mm. The Llarona catchment was dominated by light rain (less than 5 mm/day) with the duration of rainfall less than 1mm/hour. From the value of the stream coefficients shows that Larona Catchment are still at moderate condition in terms as water reservoirs

Filter by Year

2000 2022


Filter By Issues
All Issue Vol. 23 No. 2 (2022): December 2022 Vol. 23 No. 1 (2022): June 2022 Vol. 22 No. 2 (2021): December 2021 Vol. 22 No. 1 (2021): June 2021 Vol. 21 No. 2 (2020): December 2020 Vol. 21 No. 1 (2020): June 2020 Vol 20, No 2 (2019): December 2019 Vol. 20 No. 2 (2019): December 2019 Vol. 20 No. 1 (2019): June 2019 Vol 20, No 1 (2019): June 2019 Vol 19, No 2 (2018): December 2018 Vol. 19 No. 2 (2018): December 2018 Vol 19, No 1 (2018): June 2018 Vol. 19 No. 1 (2018): June 2018 Vol 19, No 1 (2018): June 2018 Vol 19, No 2 (2018) Vol. 18 No. 2 (2017): December 2017 Vol 18, No 2 (2017): December 2017 Vol 18, No 2 (2017): December 2017 Vol 18, No 1 (2017): June 2017 Vol. 18 No. 1 (2017): June 2017 Vol 18, No 1 (2017): June 2017 Vol 17, No 2 (2016): December 2016 Vol. 17 No. 2 (2016): December 2016 Vol 17, No 2 (2016): December 2016 Vol. 17 No. 1 (2016): June 2016 Vol 17, No 1 (2016): June 2016 Vol 17, No 1 (2016): June 2016 Vol 16, No 2 (2015): December 2015 Vol 16, No 2 (2015): December 2015 Vol. 16 No. 2 (2015): December 2015 Vol 16, No 1 (2015): June 2015 Vol 16, No 1 (2015): June 2015 Vol. 16 No. 1 (2015): June 2015 Vol 15, No 2 (2014): December 2014 Vol 15, No 2 (2014): December 2014 Vol. 15 No. 2 (2014): December 2014 Vol. 15 No. 1 (2014): June 2014 Vol 15, No 1 (2014): June 2014 Vol 15, No 1 (2014): June 2014 Vol. 14 No. 2 (2013): December 2013 Vol 14, No 2 (2013): December 2013 Vol 14, No 2 (2013): December 2013 Vol 14, No 1 (2013): June 2013 Vol. 14 No. 1 (2013): June 2013 Vol 14, No 1 (2013): June 2013 Vol. 13 No. 2 (2012): December 2012 Vol 13, No 2 (2012): December 2012 Vol 13, No 2 (2012): December 2012 Vol 13, No 1 (2012): June 2012 Vol. 13 No. 1 (2012): June 2012 Vol 13, No 1 (2012): June 2012 Vol 12, No 2 (2011): December 2011 Vol 12, No 2 (2011): December 2011 Vol. 12 No. 2 (2011): December 2011 Vol 12, No 1 (2011): June 2011 Vol. 12 No. 1 (2011): June 2011 Vol 12, No 1 (2011): June 2011 Vol 11, No 2 (2010): December 2010 Vol. 11 No. 2 (2010): December 2010 Vol 11, No 2 (2010): December 2010 Vol 11, No 1 (2010): June 2010 Vol 11, No 1 (2010): June 2010 Vol. 11 No. 1 (2010): June 2010 Vol. 3 No. 2 (2002): December 2002 Vol 3, No 2 (2002): December 2002 Vol 3, No 2 (2002): December 2002 Vol 3, No 1 (2002): June 2002 Vol 3, No 1 (2002): June 2002 Vol. 3 No. 1 (2002): June 2002 Vol. 2 No. 1 (2001): June 2001 Vol 2, No 1 (2001): June 2001 Vol 2, No 1 (2001): June 2001 Vol 1, No 2 (2000): December 2000 Vol 1, No 2 (2000): December 2000 Vol. 1 No. 2 (2000): December 2000 Vol 1, No 1 (2000): June 2000 Vol 1, No 1 (2000): June 2000 Vol. 1 No. 1 (2000): June 2000 More Issue