cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota malang,
Jawa timur
INDONESIA
Journal of Energy, Mechanical, Material and Manufacturing Engineering
ISSN : 25416332     EISSN : 25484281     DOI : -
Core Subject : Engineering,
Journal of Energy, Mechanical, Material and Manufacturing Engineering Scientific (JEMMME) is a scientific journal in the area of renewable energy, mechanical engineering, advanced material, dan manufacturing engineering. We are committing to invite academicians and scientiests for sharing ideas, knowledges, and experiences in our online publishing for free of charge. It would be our pleasure to accept your manuscripts submission to our journal site.
Arjuna Subject : -
Articles 186 Documents
EXPERIMENTAL INVESTIGATION ON COMBUSTION CHARACTERISTICS OF REFINE CORN OIL WITH ARECA CATECHU EXTRACT AS ADDITIVE Wardoyo, Wardoyo; Widodo, Agung S.; Wijayanti, Widya; Wardana, I. N. G.
Journal of Energy, Mechanical, Material, and Manufacturing Engineering Vol 5, No 1 (2020)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (723.925 KB) | DOI: 10.22219/jemmme.v5i1.11990

Abstract

The need for vegetable oils as alternative energy reserves increases with the depletion of fossil energy sources. Vegetable oil is the strongest candidate to replace the fossil energy. However, the use of vegetable oil directly as fuel is limited by high viscosity. Viscosity like this results in non-ideal atomization, challenging to evaporate, and cannot burn completely. Among the methods that have been studied by previous researchers and which have proven to be effective, cheaper, and can reduce the viscosity of vegetable oils better is the mixing method. In this study, corn oil was mixed with areca extract as an additive. Areca extract contains polyphenols which are polar types of epicatechin. Epicatechin has three aromatic rings and several hydroxyl groups. Delocalisation of electrons in aromatic rings can produce London forces on vegetable oil molecules, thereby increasing the reactivity of burning vegetable oil droplets. The burning characteristics of corn vegetable oil affected by areca extract have been studied experimentally at room temperature and atmospheric pressure. The results showed that the rate and temperature of combustion increased, as well as the presence of micro explosions. The London force that appears causes the bonds in the triglyceride molecules to weaken so that the combustion becomes reactive, the rate of heat transfer in the droplets gets better, facilitates the appearance of micro explosions and increases the combustion temperature. Vegetable oil from corn has been studied experimentally at atmospheric pressure and room temperature. The results show an increase in the rate of combustion, an increase in combustion temperature, and the presence of micro explosions. London force that appears causes the bonds in the triglyceride molecules to weaken so that combustion becomes more reactive, the rate of heat transfer in the droplet gets better, facilitates the appearance of micro explosions and raises the combustion temperature.
EXPERIMENTAL STUDY ON MOLD-LAY FILAMENT INSTEAD OF WAX IN INVESTMENT CASTING PROCESS Kusyairi, Imam; Himawan, Helmy Mukti; Choiron, Moch. Agus; Irawan, Yudy Surya; Safari, Rachmat; Djuanda, Dagus Resmana
Journal of Energy, Mechanical, Material, and Manufacturing Engineering Vol 5, No 1 (2020)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (736.278 KB) | DOI: 10.22219/jemmme.v5i1.10602

Abstract

Metal casting with investment casting method is metal casting which has the ability to produce accurate parts and has a controlled fineness. Current technological developments are very influential in the development of investment casting. One of them has been found mold-lay filament as a substitute for wax, which is now wax is one of the main components in investment casting process. Mold-lay filament is printed using a 3D Printer machine. In this study, the wax in the investment casting process was replaced by a mold-lay filament with the specifications 0.75kg / 0.55 lb of 1.75mm MOLDLAY filament, prints at temperatures of 170-180° C. The result show that mold-lay flutes are also able to come out well from slurry molds, but require more time than wax, this is because one of the plastic mold-lay compositions, which takes a long time for the moldlay fillment to come out of the mold. Further research suggestions are needed further testing in terms of roughness of the product with moldlay filament and compared with wax. This will also see if there are any remaining moldlay filaments from the mold.
THE POTENT OF CARRIER OIL ON PRETREATMENT OF CRUDE JATROPHA CURCAS OIL Kurniawati, Dini; Aisyah, Iis Siti
Journal of Energy, Mechanical, Material, and Manufacturing Engineering Vol 5, No 1 (2020)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (615.937 KB) | DOI: 10.22219/jemmme.v5i1.12336

Abstract

Jatropha curcas oil is a seed oil or bio-oil, which has advantages compared to others plant?s seed-oil.  The advantage of this oil is due to the fact that Jatropha oil does not compete with the food sector. In this research, the potential carrier oil testing was conducted to seek a way in improving the performance of Jatropha oil as lubricant oil, coolant or biodiesel. For this purpose, Jatropha oil was mixed with the other carrier oils in the variation of 0 ? 45 %. Each variation was tested to obtain kinematic viscosity and density values. The results of this research was the carrier oils has the potential to be used as the mixing material since it can improve the physical properties of Jatropha oil, before the next process. Kinematic viscosity and density of Jatropha oil decreases as more percentage of mixed carrier oil was added.
INVESTIGATING FLUID PARAMETERS IN NANOFIBER BIOMATERIAL FABRICATION USING ELECTROSPINNING Yusro, Muhammad; Martien, Ronnie
Journal of Energy, Mechanical, Material, and Manufacturing Engineering Vol 5, No 1 (2020)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1212.14 KB) | DOI: 10.22219/jemmme.v5i1.11226

Abstract

Fabricating nanofiber biomaterial using electrospinning is difficult due to its bioactive characteristics. Even though electrospinning is mentioned as the most well-established approach to produce nanofiber, it is undeniable that fluid factors involved in determining the product result. In this research, three influenced factors including viscosity, conductivity, and surface tension are investigated in the system of Biomaterial Composite that contains mixed Chitosan-Pectin material blended to the Polyvinyl Alcohol (PVA). Various concentrations were made up to create an assorted liquid profile to some extent influencing fluid characteristic which affecting fabrication result. This research also analyzed the interaction between group materials using Fourier Transform Infra-Red (FTIR). Moreover, bead and spray phenomena which are commonly occurred in the process of fabrication are also deliberated correlating with fluid parameters. This experiment revealed that the range of the ability of the composite solution that can be fabricated was from 90/10 to 60/40 with the average diameter size for each composition are 90/10 = 155,39 ± 43,68 nm, 80/20 = 99,03± 26.01 nm, 70/30 = 111,387 ± 50,06 nm, and 60/40 = 107,06 ± 47,36 nm. Regarding fluid characteristics, the discrepancy related to the effect of viscosity to nanofiber size has occurred due to the nonuniform shape and type that affected the average size of the nanofiber. Meanwhile, the conductivity parameter found as the main reason related to the limited ability of the electrospinning process. Furthermore, the surface tension parameters noted as a factor that influencing droplet and beads formation.
OPTIMIZATION OF SPOT WELDING FOR PEEL LOAD ON SPCC STEEL SHEETS Purwanto, Raden Edy; Hartono, Moh.; Widodo, Yuniarto Agus
Journal of Energy, Mechanical, Material, and Manufacturing Engineering Vol 5, No 1 (2020)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (682.705 KB) | DOI: 10.22219/jemmme.v5i1.10492

Abstract

Spot welding is a process of connecting two metal components through one or more connection points by using heat from electrical resistance which is carried by two electrodes to the metal to be connected with a certain welding time. The purpose of this study is to determine the effect of voltage and time of pressure used for spot welding on the shear strength and peel strength on the SPCC plate. The variables used in this study are independent variables of electric current variation of 2.30 V, 2.70 V, 3.20 V and time variation of 3 seconds, 4 seconds, and 5 seconds with 1mm plate thickness. The dependent variable in this study is the calculation of shear strength and peel strength in universal testing machine, and the controlled variable in this study is 1mm plate thickness characteristic of SPCC palate work piece. The research method was carried out using the ANOVA Factorial with the null hypothesis that there was no influence of the spot welding time and voltage on spot welding on the shear strength and strength of the SPCC material's peel. The results of the study are for the shear test seen from the calculation using MINITAB, the time variation of the pressure is no effect, while for the voltage and the combination of time suppression and voltage there is influence. For strength testing, the null hypothesis is rejected for all variations, which means that there is an influence on the strength of the peel test.
COMPARATIVE STUDY OF FORWARD WINGTIP FENCE AND REARWARD WINGTIP FENCE ON WING AIRFOIL EPPLER E562 Hariyadi, Setyo; Sutardi, Sutardi; Widodo, Wawan Aries; Pitoyo, Bambang Juni
Journal of Energy, Mechanical, Material, and Manufacturing Engineering Vol 5, No 1 (2020)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1094.366 KB) | DOI: 10.22219/jemmme.v5i1.11968

Abstract

The perfect wing is a dream that many airplanes has manufactured have been striving to achieve since the beginning of the airplane design. There are some aspect that most influence in aircraft design lift, drag, thrust, and weight. The combination of these aspects leads to a decrease in fuel consumption, which reduces pollution in our atmosphere and increase in economic revenue. One way to improve aircraft performance is to modify the tip of the wing geometry, which has become a common sight on today?s airplanes. With computational programs, the effects on drag due to wingtip devices can be previewed. This research was done numerically by using turbulence model k-? SST. Reynolds number in this research was 2,34 x 10 4 with angle of attacks are 0o, 2o, 4o, 6o, 8o, 10o, 12o, 15o, 17o and 19o. The model specimen is wing airfoil Eppler 562 with winglets. Two types of wingtips are used: forward and rearward wingtip fence. From this study, it was found that wingtip fence reduced the strength of vorticity magnitude on the x axis compared to plain wings. The leakage of fluid flow effect at the leading edge corner of the wingtip, giving pressure gradient and slightly shifting towards the trailing edge. this occurs in the plain wing and rearward wingtip fence but does not occur in the forward wingtip fence..
PdFeCo Supported on N-rGO as a Bifunctional Catalyst for Methanol Oxidation and High Stability Oxygen Reduction Reaction Frizka Vietanti; Chen-Hao Wang
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 5 No. 2 (2020)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v5i2.11643

Abstract

In this study, we have synthesized nitrogen doped reduced graphene oxide (N-rGO) supported ternary PdFeCo nanoparticle by three methods. A hydrothermal method to synthesize N-rGO, an emulsion method to synthesize PdFeCo nanoparticle, and a rota-evaporation to synthesize PdFeCo/N-rGO composite. A bifunctional PdFeCo/N-rGO exhibited excellent electrocatalytic activity towards both methanol oxidation and stability in oxygen reduction reaction (ORR). During methanol oxidation reaction, PdFeCo/N-rGO exhibited stronger methanol tolerance than Pt/C. In stability ORR, PdFeCo/N-rGO exhibited 2.85 times greater than Pt/C  in ORR stability. The high performance of PdFeCo/N-rGO was attributed by strong bonding of structure. A strong bonding of transition metals in Pd based catalyst can servemethanol tolerance and stability during ORR activity.
Fractional Recrystallization Behavior of Impurity-Doped Commercially Pure Aluminum Mohammad Salim Kaiser
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 5 No. 2 (2020)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v5i2.11675

Abstract

This manuscript reports the effects of trace impurities on the fractional recrystallization behavior of commercially pure aluminum. To allow the recrystallization cold rolled by 75% alloy samples are annealed isothermally at 700ºK for different time up to 60 minutes. Recrystallization kinetics is evaluated from the micro hardness variation of the different annealed samples. The JMAK type analysis is also used to study the recrystallization behavior as well as to observe the correlation with the experimental results. The behavior of the fraction recrystallization between two methods the trace impurities added alloys is evidence for the higher variation as to form GP zones and metastable phases during annealing. Higher addition shows the more variation as the formation of higher fraction phases. The microstructural study reveals that annealing at 700ºK for 30 minutes the alloys attain almost fully re-crystallized state.
Thermal Design Optimization of No Phase Change Shell-and-Tube Heat Exchanger using Particle Swarm Algorithm Vera Pangni Fahriani; Reza Setiawan; František Hrdlička; Prihadi Setyo Darmanto
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 6 No. 2 (2021)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v6i1.11766

Abstract

Shell-and-tube heat exchanger is designed to satisfy certain requirements such as heat transfer capability, allowable pressure drop and limitation of size. Beside such requirements, it is important to consider economical point of view to get lowest total cost. In this study, computational program and optimization for thermal design shell-and-tube heat exchanger were built for liquid to liquid with no phase change process in four variables design parameters using Bell-Delaware method. The design variables were tube size, tube length, baffle cut to shell inside diameter ratio and central baffle spacing to shell inside diameter ratio. Particle swarm algorithm was used as optimization method to get lower solution for economical point of view shell-and-tube heat exchanger. The results from two study cases show that particle swarm algorithm got lower total cost from the original design. The total cost decreased 28.84 %  in first study case and 52.57 %  in second study case from the original design.
Preliminary Design of Wellhead Spacer Spool Based On the API Acceptance Criteria Budi Baharudin; Rahman Hakim; Rahmat Hidayat; Mohammad Anas Fikri; Auliana Diah Wilujeng
JEMMME (Journal of Energy, Mechanical, Material, and Manufacturing Engineering) Vol. 6 No. 1 (2021)
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jemmme.v6i1.11879

Abstract

In the case of assembly wellhead, a spacer spools was used to provide space and connect between parts of the wellhead. In order to design spacer spool with specified material should comply the standards and procedures of the oil and gas industry. The results of the material calculation were using the ASME BPVC guidelines. These three materials strengths were calculated if used as a body spacer spool. Based on acceptance criteria on API 6A 21st Edition, these three materials were categorized as acceptable to be used as a body spacer spool for this specification. These three materials strengths were also calculated the stress of the flange and flange rigidity criteria. Based on the acceptance criteria on ASME BPVC guidelines, the results showed that these materials can be used for flange because it had stress value under yield strength of material which was flange rigidity criteria for operating condition has 0.59 and 0.66 for testing condition because had value of rigidity that met with minimum acceptance criteria.

Page 6 of 19 | Total Record : 186