cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Rehabilitation of Composite Column Subjected to Axial Load Hassooni, Anas Nahidh; Al-Zaidee, Salah R.
Civil Engineering Journal Vol 8, No 3 (2022): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-03-013

Abstract

Concrete Filled Double Steel Tube (CFDST) columns are a modern technique of composite structural element that has fire resistance and has been adopted in high-rise building structures. The Concrete Filled Steel Tube (CFST) columns also have high strength and ductility due to composite action. This type of column CFST can sustain a heavy load with high performance and has been adopted in recent years in many countries around the world. The aim of the present work is to study the behavior and strength of rehabilitation of composite columns that are made from concrete core and surrounded steel tubes under the effect of axial compression loads with different height to diameter ratios such as 5.46, 10.91, and 16.37, respectively, by experimental tests. Double skin methodology is adopted to repair the damaged columns that were tested up to 85% of the ultimate load. Strength column capacity of double skin columns, axial and buckling deformations with axial and buckling strains are investigated. Test results showed that the repaired specimens up to 85% of the ultimate load had the same strength carrying capacity as compared with the control specimens, which had the same geometry. The ductility of an 800 mm specimen’s height is greater than the other tested specimens, while the stiffness of short specimens becomes high. Doi: 10.28991/CEJ-2022-08-03-013 Full Text: PDF
Effect of Pumice Stone and Sugar Molasses on the Behavior of Reinforced Concrete One-Way Ribbed Slabs Mohammed, Tamara Amer; Kadhim, Hayder Mohammed
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-011

Abstract

The world is currently heading towards sustainability by reducing the amount of concrete, thus reducing the total unit weight. Moreover, design construction requires materials with a higher strength-to-weight ratio. Ribbed slabs and lightweight concrete (LWC) are considered two leading sustainability facilities. This research developed an experimental study to evaluate the effects of concrete type, steel reinforcement ratio, the geometry of ribs, voiding ratio, and slab type on the structural behavior of one-way ribbed slabs. Eight of the one-way slabs were constructed using pumice stone and by-product material sugar molasses (SM), and one slab was constructed using gravel and SM. These slabs were tested under a static two-point load and simply supported until failure. The results showed that using SM with pumice stone instead of gravel led to high strength-lightweight concrete (HSLWC), with a cylinder compressive strength of 42.2 MPa and a density of 1943 kg/m3, which meets the requirements of HSLWC codes. Using HSLWC instead of high-strength normal-weight concrete (HSNWC) decreased the thermal conductivity by 43.55% and the unit weight by 19.31%. Moreover, the ultimate strength of the HSLWC one-way ribbed slab decreased by 17.70%. Overcoming this strength reduction necessitated increasing the steel reinforcement ratio of the ribs from 0.28 to 0.44% in the HSLWC ribbed slab. Changing the number of ribs at the same amount of HSLWC showed a minor effect on the strength capacity of slabs but showed an economic benefit. However, increasing the rib width to reduce the voiding ratio from 44 to 40% resulted in a greater improvement in structural efficiency (SE) of one-way ribbed slab than reducing it from 44 to 33%. Consequently, the optimum rib width was 120 mm. Moreover, using a ribbed slab instead of a solid slab of HSLWC at the same amount of concrete increased the ultimate strength by 130.37%, decreased deflection by 3.99%, and improved SE by 126.46%. Furthermore, experimental results of ultimate load were compared with the ACI 318-19 code design equation. Doi: 10.28991/CEJ-2022-08-02-011 Full Text: PDF
Effects of Fiber Type and Shape on the Shear Behavior of Reinforced Concrete Corbels without Hoop Re-bars Saleh, Ihab S.; Faleh, Saddam Kh.; Mahdi, Muthana Sh.
Civil Engineering Journal Vol 8, No 3 (2022): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-03-08

Abstract

In this research, the structural behavior of reinforced concrete brackets cast with concrete containing different types of fibers was studied. Seven samples of reinforced concrete corbels were cast and tested. One specimen was cast without fiber as a reference, and the other samples were made with six different types of fibers at a constant volume fraction (1% of the total concrete volume). The fibers used in the research were made of two different materials: steel and polyolefin. One specimen was cast with polyolefin fiber, and in the five remaining samples, steel fiber was used. Straight, crimped, and three different dimensions of hooked fiber were used. The results showed that the corbels with straight and hooked end steel fiber (6, 5, and 3 cm length), crimped steel fiber sized 3 cm, straight steel fiber sized 12 mm, and straight polyolefin fiber sized 6 cm showed 69.2%, 57.7%, 38.5%, 61.5%, 92.3%, and 100% higher cracking loads than the control corbel made with normal concrete, respectively, as well as exhibiting (51.7%, 48.3%, 31.0%, 24.1%, 12.1%, and 3.4%) higher ultimate loads than the control corbel. From these results, it can be concluded that the shape of the steel fiber clearly affects the ultimate load. For the same length, and despite the lack of aspect ratio, steel fibers gave an increase in the maximum load of 46.6% when compared with polyolefin fibers. Doi: 10.28991/CEJ-2022-08-03-08 Full Text: PDF
Numerical Study of Wind Loads on Y Plan-Shaped Tall Building Using CFD Goyal, Pradeep K.; Kumari, Sonia; Singh, Shivani; Saroj, Rahul Kumar; Meena, Rahul Kumar; Raj, Ritu
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-06

Abstract

The increase in the population is at an exponential rate, and the available land is in the form of irregular shapes. That is why irregular shapes are very commonly built. Wind load increases with respect to height, so wind load evolution is necessary for such high-rise structures. Wind forces majorly depend on the plan's cross-sectional shape. Therefore, for an irregular shape, an investigation is needed for tall buildings. This paper demonstrates a detailed study on velocity stream line, external pressure coefficients, pressure distribution on the surfaces of the building and the turbulence kinetic energy for the Y-shaped plan for tall buildings under wind excitation for wind incidence angles of 0o to 180o. k-  turbulence model is utilized to solve the problem using computational fluid dynamics techniques in ANSYS for terrain category II as per IS: 875 (Part3), 2015. Wind ward faces in all building models show positive pressure distribution, while the leeward faces are under the effect of negative pressure distribution. Wind load can be reduced on building models by modifying the corners, such as chamfering, rounding, and double recessed. The variation of pressure distribution on different faces of a "Y" plan shaped tall building for 0° and 180° is investigated using ANSYS CFX, and the pressure contours are plotted for all the faces of different "Y" shaped buildings to compute the effect of corner modification on pressure distribution. In this research, it was found that building models with rounded corners are highly efficient in resisting the wind load. Doi: 10.28991/CEJ-2022-08-02-06 Full Text: PDF
Rotation of Stresses in French Wheel Tracking Test Djenane, Mohamed; Demagh, Rafik; Hammoud, Farid
Civil Engineering Journal Vol 8, No 3 (2022): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-03-03

Abstract

The main function of a pavement is to distribute the traffic-induced load over its different layers. While the flexible pavement design methods are based on a linear elastic calculation, the real behavior of the different layers is highly non-linear and elastic. They can also, in some cases, be plastic and viscous. This research aims to develop a three-dimensional numerical model that is closely similar to the test FWTT conditions. The model will have a real geometry wheel footprint (rather than a rectangular shape). As a substitute for incremental loading, the wheel movement during its passage over the specimen will be simulated by a horizontal displacement. These important characteristics of the model represent the novelty and the major difference between the current research and previous studies. The current model, which is based on the finite elements method, uses Abaqus software and a viscoelastic constitutive model. The materials' viscoelastic properties have been described by the Prony series, also called the relaxation modulus, which is a function of time. This parameter can be defined in most computer-aided engineering (CAE) software. The procedure for calculating the Prony series from experimental data is explained. The results obtained agree with the stress signal amplitude, the stress rotation principal, and the total displacement rotation when the load approaches the node considered and located in the middle of the specimen. Doi: 10.28991/CEJ-2022-08-03-03 Full Text: PDF
Construction Labour Measurement in Reinforced Concrete Floating Caissons in Maritime Ports Pérez-Díaz, Pedro; Martín-Dorta, Norena; Gutiérrez-García, Francisco Javier
Civil Engineering Journal Vol 8, No 2 (2022): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-02-01

Abstract

This research work attempts to approach the measuring of the working equipment necessary to make floating caissons for maritime work and their performances. With this objective, an empirical study has been carried out based on the construction of five floating caissons with a rectangular layout of 34.00 meters in length, 17.00 meters in width, and 19.00 meters in depth, lightened with 32 vertical cells. This work was carried out in the port of Granadilla, Tenerife (Spain). The updated scientific literature related to the execution of this type of floating structure refers to the importance of the calculation hypotheses, the actions to be taken into account, the service states or the importance of the choice of materials (concrete and steel). However, scientific research does not seem to face the problem of how to size the working team necessary to execute this type of structure. The work force is approached from the point of view of the adequate sizing of working groups. The important contribution of the article to the project and construction management literature is the development and capability of an easy-to-use optimization model for planning the labour and labour days required in floating caisson construction. The optimization model proposed in this research allows the project managers of a construction company to estimate the labour costs and teams necessary in the execution of the construction. This gives it a competitive advantage both in the construction phase and in the bidding phase for the award of the work. Doi: 10.28991/CEJ-2022-08-02-01 Full Text: PDF
Seismic Performance of Staircases in the 3D Analysis of RC Building Omnia Hussien Ahmed; Abdel-Rahman Hazem; Ashraf Adel Shawky
Civil Engineering Journal Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges"
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-SP2021-07-08

Abstract

Stairs play an important role as an escape way and are considered a source of safety in the building during an earthquake. Neglecting the stairs in the 3D analysis model is the main cause of the stairs' failure during the earthquake. Although the previous researchers had focused on the behavior of stairs when changing single variables such as height, location, and layout under seismic loads, no detailed investigation that gathers these variables together was considered. This research studies the effects of changing the number of storeys for a building subjected to an earthquake when considering and neglecting stairs in the 3D analysis with and without shear walls. The effect of the volume and location of the shear wall has been considered through conducting computational analysis using ETABS software to help the structural engineer choose the proper system of stairs and shear walls. Neglecting the staircase in the 3D analysis affects the structure's performance, which leads to ignoring many stresses transferred to the stairs, causing several damages to the stairs during an earthquake. For the existing building without a shear wall, considering the staircases in the analysis improves the performance of the structure under seismic loads. Doi: 10.28991/CEJ-SP2021-07-08 Full Text: PDF
Slope Reinforcement Model Scale Test With X-Block Karapa, Enos; Harianto, Tri; Muhiddin, A. B.; Irmawaty, Rita
Civil Engineering Journal Vol 8, No 3 (2022): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-03-014

Abstract

This study aims to determine the material composition and dimensions of X-block, develop a slope reinforcement model using X-block, evaluate the mechanical behavior of slopes that are reinforced with rock-bound by X-block, and analyze the performance of slope reinforcement using X-block. This research was conducted at Hasanuddin University's soil mechanics and civil engineering structure laboratory. The model scale test was employed in this study. The geometrical speciation of the test box is 150 cm in length, 60 cm in width, and 100 cm in height. The X-block model was produced using concrete with a FC of 25 MPa. The X-block was divided into two types: X-block type 1 and X-block type 2. Tensile strength testing is performed on the X-block. The slopes are made of clay soil and have a slope angle of 70 degrees. The loading test was conducted in three stages: without block, with X-block type 1, and with X-block type 2. The loading test uses a hydraulic pump equipped with a load cell and LVDT. The tensile strength of X-block type 1 is 2.56 MPa, whereas X-block type 2 has a tensile strength of 4.35 MPa. The development of the type X-block design, which is used as a retaining wall material, has shown that it can effectively withstand landslides on the slopes under consideration. The slope safety factor rose dramatically after being reinforced with type X-blocks, reaching 2.73 for both X-block type 1 and X-block type 2. Doi: 10.28991/CEJ-2022-08-03-014 Full Text: PDF
Enhancing the Development of Sustainable Modes of Transportation in Developing Countries: Challenges and Opportunities Mohammed Dahim
Civil Engineering Journal Vol 7, No 12 (2021): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091776

Abstract

All modes of transport can be seen to bring some influence to bear on a country’s economic growth, health, and environment. However, the impact differs among developing countries. This paper presents an assessment and evaluation of the development of a sustainable transportation system in the Kingdom of Saudi Arabia (KSA). For this study, data were collected about the four transportation modes of sea, air, road and rail. The data were analyzed to determine the current condition, needs, challenges, and opportunities for improvement for each mode of transportation. Problems associated with each transportation mode were addressed and solutions to overcome these problems were recommended. The results indicate that while sea transportation provides the country with freight transport, it is of limited service to passengers in the Gulf region or on the Red Sea. Air transportation meets the needs of Saudi Arabia with international connections, but domestic flights provide limited passenger transport to the wealthy and are not an effective mode of transport for short distances. Road transport is the most popular mode for the general public but is associated with numerous problems such as the environment, health, noise, a high accident rate, and being the first cause of death in the country. Rail transportation seems to be the mode which is most sustainable for the future. It is essential that KSA meets public demand for public transportation with a reliable, cost effective, and safe public transportation system. Doi: 10.28991/cej-2021-03091776 Full Text: PDF
Environmental and Economic Analysis of Selected Pavement Preservation Treatments Kelvin Zulu; Rajendra P. Singh; Farai Ada Shaba
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091465

Abstract

Pavements are one of the highest assets and represent massive investment. The need to design and provide a sustainable maintenance service is becoming a priority and this comes mutually with the intentions to reduce impacts caused by maintenance treatments to the environment. This paper through a case study presents a Life Cycle Cost and Assessment technique during a 30 year analysis period to measure the cost effectiveness, embodied energy and carbon emissions of selected preservation treatments. These treatments can either be applied separately or in combination during the preventive maintenance of road pavements. This study entails three life cycle phases of material extraction and production, transportation and construction of maintenance activities. Through a literature review, raw materials energy and emission inventory data was averaged followed by the analysis of the equipment involved by using the specific fuel consumption to calculate the energy and emissions spent by the machine and finally the selected treatment energy and emissions was computed. Results show that preservation treatments can have an LCC of 30-40 % and embodied energy and carbon emission of 3-6 times lower than the traditional approach. This study bridges gaps in literature on integrated evaluation of environmental and economic aspects of preservation treatments.

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue