cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
An Experimental Study on the Effect of Tire Powder on the Geotechnical Properties of Clay Soils Akbarimehr, Davood; Aflaki, Esmael
Civil Engineering Journal Vol 4, No 3 (2018): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (481.387 KB) | DOI: 10.28991/cej-0309118

Abstract

With respect to the increasing production of tire wastes, the use of these wastes as an additive in civil engineering has always gained attentions of researchers due to their positive effects on material properties and reduction of environmental problems. Clay soils, as problematic soils, have always caused geotechnical problems including high Atterberg limits and consequently low workability. Tire powder, as one of the products of tire wastes, lacks clay cohesion and it can be effective in altering the plasticity of clay soils. As no comprehensive study has been conducted in this regard specifically on Tehran clay soil yet, this research studies experimentally the effect of adding different percentages of tire powder to clay soil at the Atterberg limits of clay soils with two different types of plasticity. More over according to previous studies, the effect of tire powder on other geotechnical properties of clay soils and the advantages and disadvantages of using tire powder in clay soils are discussed. The results indicate that addition of tire powder to clay soils has positive effects on reducing the Atterberg limits, increasing efficiency, and improving resistance, permeability, swelling reduction, and settlement properties, and reducing soil density and it can be used as an additive in improving clay soils.
Integrated Metaheuristic Differential Evolution Optimization Algorithm and Pseudo Static Analysis of Concrete Gravity Dam Taher Memarian; Yaser Shahbazi
Civil Engineering Journal Vol 3, No 8 (2017): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (886.429 KB) | DOI: 10.28991/cej-2017-00000116

Abstract

A differential evolution-algorithm-based optimum design method is presented for concrete gravity dams under stability, principal stress, and sliding constraints. A gravity dam is a large scale hydraulic structure providing its stability based on weight of concrete volume. Hence, optimization of dam cross-section leads to an economic and low cost structure. For this aim, a general dam section is reconstructed with seven proper horizontal and vertical geometric parameters which take into account all possible cross section shapes. Weight of dam is considered as goal function and the optimization problem of geometric parameters is solved using DE algorithm. The DE algorithm written as a MATLAB code are applied to Four benchmark gravity dams including Middle Fork, Richard, Pine Flat, and Friant. The comparison of DE optimum solutions with real dimension of dams and another optimization method in literature shows the performance of the DE algorithm. In mentioned benchmark dams, there are 26.82%, 30.11%, 25.31%, and 20.93% of weight reduction Compared to real values, respectively. Also, optimization results of DE algorithm are compared with literatures. The comparison shows 3.55%, 5.1%, 19.13% and 12.14% reduction of weight compared to GA and PSOD algorithms, respectively.
RETRACTED: Investigation on the Mechanical Properties of Fiber Reinforced Recycled Concrete Hasan Jalilifar; Fatholla Sajedi; Sadegh Kazemi
Civil Engineering Journal Vol 2, No 1 (2016): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (880.856 KB) | DOI: 10.28991/cej-2016-00000009

Abstract

This article has been retracted: please see Civil Engineering Journal policies:(https://www.civilejournal.org/index.php/cej/about/editorialPolicies).This article has been retracted at the request of the Editor-in-Chief. Violation of rules: submitting articles without approval of all coauthors.
Effect of Dry-wet Cycle on the Formation of Loess Slope Spalling Hazards Yuyu Zhang; Wanjun Ye
Civil Engineering Journal Vol 4, No 4 (2018): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1625.588 KB) | DOI: 10.28991/cej-0309133

Abstract

This paper investigates the effect of dry-wet cycle process on the formation of loess slope spalling hazards. Based on the CT scan tests and macroscopic fissures analysis, the fissure variation law of loess samples under different dry-wet cycle times were determined. Through the laboratory direct shear tests, the variation law of shear strength, cohesion and angle of internal friction of loess samples under different dry-wet cycle times and different dry-wet cycle water content variation ranges were discussed. The results show that the natural water contents of Luo-chuan loess were higher than Tong-chuan loess due to it’s higher contents of clay particles. With the increase of dry-wet cycle times, the internal fissure numbers of loess samples increased dramatically. The value of shear strength and cohesion of loess samples in two different areas decreased dramatically due to the increase of dry-wet cycle times. Higher water content variation ranges of dry-wet cycles leaded to lower shear strength of loess samples under the same dry-wet cycle times. Loess slope spalling hazards often happened due to the decrease of shear strength and the occurrence of internal fissures in loess induced by the dry-wet cycle process.
Flood Analysis in Karkheh River Basin using Stochastic Model Karim Hamidi Machekposhti; Hossein Sedghi; Abdolrasoul Telvari; Hossein Babazadeh
Civil Engineering Journal Vol 3, No 9 (2017): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (991.464 KB) | DOI: 10.21859/cej-030915

Abstract

This study analyzed the annual streamflow of Karkheh River in Karkheh river basin in the west of Iran for flood forecasting using stochastic models. For this purpose, we collected annual stremflow (peak and maximum discharge) during the period from 1958 to 2015 in Jelogir Majin hydrometric station (upstream of Karkheh dam reservoir). A time series model (stochastic model or ARIMA) has three stages consists of: model identification, parameter estimation and diagnostic check. Model identification was done by visual inspection on the Autocorrelation and Partial Autocorrelation Function. Three types of ARIMA(p,d,q) models (0,1,1), (1,1,1) and (4,1,1) suggested for the studied series. The suggested model parameters were computed using the Maximum Likelihood (ML), Conditional Least Square (CLS) and Unconditional Least Square (ULS) methods. In model verification, the chosen criterion for model parsimony was the Akaike Information Criteria (AIC) and the diagnostic checks include independence of residuals. The best ARIMA model for this series was (4,1,1), with their AIC values of 88.9 and 77.8 for annual peak and maximum streamflow respectively. Forecast series up to a lead time of ten years future (2006 to 2015) were generated using the accepted ARIMA models. Model accuracy was checked by comparing the predicted and observation series by coefficient of determination (R2). Results show that the ARIMA model was adequate for the flood analysis in Karkheh River and the forecast of the series in short time at future.
An Investigation on Mechanical Properties and Durability of Concrete Containing Silica Fume and Fly Ash Ali Sadr Momtazi; Behzad Tahmouresi; Reza Kohani Khoshkbijari
Civil Engineering Journal Vol 2, No 5 (2016): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (977.115 KB) | DOI: 10.28991/cej-2016-00000025

Abstract

Nowadays pozzolans are used vastly in civil projects. Pozzolan is a natural or artificial material containing active silica that increase the strength and improves some properties of concrete. In this survey for investigating some important properties of concrete, silica fume and fly ash was used in replacement of cement in different weights. Concrete compositions were made with water-cement ratio of 0.45 and cured under the same conditions. The main focus of this survey is to investigate the individual and combined effect of using Pozzolan on mechanical properties, permeability and shrinkage of concrete. The mechanical properties of concrete in compressive and bending strength at the age of 7, 28 and 90 days, were evaluated. Permeability was investigated with the water absorption test. The drying shrinkage of concrete was monitored for 90 days. Scanning Electron Microscopy (SEM) images was used in concrete cement based matrix morphology. The results showed that the addition of pozzolan increases the mechanical strength and reduce permeability and increase the drying shrinkage in some mixtures.
Self-Healing Ability of High-Strength Fibre-Reinforced Concrete with Fly Ash and Crystalline Admixture T. Chandra Sekhara Reddy Reddy; A Ravitheja Theja; C. Sashidhar
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (856.915 KB) | DOI: 10.28991/cej-0309149

Abstract

The aim of this study is to analyse the self-healing capability of high-strength fibre-reinforced concrete (M70) with fly ash and crystalline admixture (CA) in four types of environmental exposures i.e. Water Immersion (WI), Wet-Dry Cycles (WD), Water contact (WC) and Air Exposure (AE). Specimens for four mixes are cast, one mix containing 1.1% of CA and three mixes with 10%, 20% and 30% partial replacement of cement with fly ash and additions of 1.1% CA. The specimens were pre-cracked at 28 days, in the range of 0.10-0.40 mm and the time set for healing was 42 days. The result shows that all the mixes have considerable amount of closing ability and strength-regaining capability for all exposure conditions. The concrete with 20% fly ash and 1.1% CA has complete crack closing ability and 100% strength-regaining capability for WI and WD cycle conditions. From SEM analysis, it is confirmed that self-healing products are CaCO3 and C-S-H gel.
Effect of SBS Polymer and Anti-stripping Agents on the Moisture Susceptibility of Hot and Warm Mix Asphalt Mixtures Hamed Omrani; Ali Reza Ghanizadeh; Amin Tanakizadeh
Civil Engineering Journal Vol 3, No 10 (2017): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (840.033 KB) | DOI: 10.28991/cej-030931

Abstract

The primary objective of this study is exploring the moisture susceptibility of unmodified and SBS-modified hot and warm mix asphalt mixtures. To this end, two different WMA additives including Aspha-min and Sasobit were employed to fabricate WMA specimens. The moisture susceptibility of warm polymer modified asphalt (WPMA) mixes was evaluated using modified Lottman test at 25°C according to AASHTO standard (T 283). In addition, the effect of different percentages of hydrated lime (from 0% to 2%) and Zycosoil (from 0% to 0.1%) as anti-stripping additives on the moisture susceptibility of the mixtures was explored. Based on the ITS test results, WPMA prepared with Sasobit additive and polymer modified asphalt (PMA) mixes satisfied the desirable tensile strength ratio (TSR) (above 80%) but Aspha-min WPMA mixes had TSR lower than 80%.
Utilization of Soft Computing for Risk Assessment of a Tunneling Project Using Geological Units Sina Shaffiee Haghshenas; Sami Shaffiee Haghshenas; Milad Barmal; Niloofar Farzan
Civil Engineering Journal Vol 2, No 7 (2016): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (718.734 KB) | DOI: 10.28991/cej-2016-00000040

Abstract

Soft computing is one of the most efficient tools for analysing risk taking in civil engineering projects. Therefore, in this paper, using Fuzzy C-means (FCM) technique as one of the most efficient and important classification methods in the area of soft computing, risk in the tunnelling project was evaluated and analysed. For this reason, considering three mechanical and physical parameters influencing the design and execution of the tunnelling project including overburden (H), internal friction angle (Phi) and cohesion (C), geological units were classified along the project's route. The present study has been conducted on the third section of Ghomrud tunnel as one of the greatest tunnelling projects in the centre of Iran. Results obtained from the evaluation of geological units along the tunnelling project's route after the validation of drilling rate index’s results show the appropriate evaluation of the project’s risk through fuzzy clustering technique.
Stabilizing the Excavation Materials to be used in Fill Layers Ali Sabbagh Moghadam; Navid Hadiani
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1323.126 KB) | DOI: 10.28991/cej-0309165

Abstract

Daily increase in the amounts of soil and wastes produced by excavation and demolishing of the old buildings in the urban worn out textures has caused great problems in large cities. The environmental issues due to the irrelevant and non-technical disposal of waste materials have attracted attention of researchers with the aim of recycling and use of these materials in the civil and construction activities. Old buildings constitute a significant portion of Sharestan Razavi Blvd in Mashhad which after demolishing of these buildings the area in this section is covered by the backfill materials and those remained from the demolishing of the buildings. In this research, maximizing use of the available materials and minimizing the transportation work as an execution order have been under focus of attention.  Also through performing various tests, the  possibility of recycling, stabilizing and implementing these materials at underlying layers of Sharestan Razavi Blvd has been evaluated and the results are presented.

Page 17 of 185 | Total Record : 1848


Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue