cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Three-Dimensional Simulation of Flow Field in Morning Glory Spillway to Determine Flow Regimes (Case Study: Haraz Dam) Amir Reza Razavi; Hassan Ahmadi
Civil Engineering Journal Vol 3, No 11 (2017): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (777.736 KB) | DOI: 10.28991/cej-030943

Abstract

Morning-glory spillways are usually used in dams constructed in narrow valleys or those on steeply sloped supports. Furthermore, one can adopt this type of spillway in cases where guiding and diversion tunnels of adequate diameter are available. One of positive characteristics of these spillways is that, their maximum capacity can be approached at relatively low head. This characteristic can be seen as an advantage in cases wherein maximum outflow from the spillway shall be limited. On the other hand, should water head on top of the spillway exceeds the project baseline head, changes in output discharge will be negligible. Morning-glory spillways are commonly used in large dam construction projects across Iran (e.g. Sefid-Rood Dam, Alborz Dam, Haraz Dam, etc.). Given that spillway is one of the most important axillary structures for dams, accurate and realistic characterization of the hydraulic conditions affecting them seems to be necessary. On this basis, the present research is aimed at accurate determination of flow behavior and discharge coefficient of morning-glory spillways from the flow inlet down to horizontal tunnel of the morning-glory spillway of Haraz Dam. For this purpose, the most significant hydraulic parameters (including flow depth, flow velocity, flow pressure at different sections of the spillway, and rate of outflow at spillway) will be determined. In this study, an effort was made to use the numerical model of Flow3D to numerically model three-dimensional flow based on physical model and actual data from one of the largest and most important morning-glory spillways for calibration and verification purposes, and determine accuracy of the numerical modeling and associated error with simulating the numerical model. Results of this study show that, the flow at morning-glory spillways is controlled in either of three modes: flow control at crest, orifice control, and pipe control.
Numerical Detection of Cavitation Damage on Dam Spillway E Fadaei-Kermani; G. A Barani; M. Ghaeini-Hessaroeyeh
Civil Engineering Journal Vol 2, No 9 (2016): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (712.688 KB) | DOI: 10.28991/cej-2016-00000051

Abstract

The present paper deals with the numerical detection of cavitation damage level and location on dam spillways. At first, flow over a spillway was simulated using the computational fluid dynamics method. The flow characteristics such as pressure, velocity and depth through the spillway have been calculated for five different flow rates. Since the actual flow is turbulent, the RNG turbulence model has been used for simulation. The numerical results of flow characteristics including flow depth, velocity and pressure were compared with the available results of the hydraulic model tests. The numerical results agreed well with the experimental data, and reasonable values for the normalized root mean square error (NRMSE= 0.0476) and coefficient of determination (r2=0.8354) indicated that the numerical model is accurate. Finally occurrence of cavitation damage to the Doosti dam spillway was investigated. Based on cavitation index, five different damage levels from no damage to major damage have been considered. Results showed that the spillway may be at the risk of cavitation damage, and the serious damage can occur at ending parts of the structure.
A Comparative Study on the Behavior of Steel Moment-Resisting Frames with Different Bracing Systems Based on a Response-Based Damage Index Kamran Karsaz; Seyed Vahid Razavi Tosee
Civil Engineering Journal Vol 4, No 6 (2018): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1504.067 KB) | DOI: 10.28991/cej-0309178

Abstract

Seismic rehabilitation of existing buildings is one of the most effective ways to reduce damages under destructive earthquakes. The use of bracings is one of techniques for seismic rehabilitation of steel structures. In this study we aimed to investigate the seismic performance of three 5, 10 and 15-storey steel structures with moment-resisting frames designed three dimensionally in ETABS 2015 application based on first edition of Iranian Standard 2800. Their damage under five ground motions was evaluated using response-based damage model proposed by Ghobara et al. (1999). Then, the structures were rehabilitated with different bracing systems (X, eccentric and concentric V and inverted-V) and, again, their damage under five earthquakes were evaluated and compared with those of moment resisting frames. The pushover analysis results indicated that X-braced frame was the least ductile system but had highest initial stiffness and yield stress. In low-rise building, X-braced frames showed better performance among studied bracing systems compared to moment resisting frames, while mid and high-rise buildings with eccentrically braced  frame (EBF) showed the best behavior against earthquakes with the least damage. Moreover, it was found out that EBFs’ performance increases by increasing storey height, but for concentrically braced frames (CBFs) it was decreased. We concluded that the use of response-based damage models can be a suitable procedure for estimating the vulnerability of steel structures rehabilitated with bracing system.
Size and Shape Optimization of Space Trusses Considering Geometrical Imperfection-Sensitivity in Buckling Constraints Fardad Haghpanah; Hamid Foroughi
Civil Engineering Journal Vol 3, No 12 (2017): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1253.14 KB) | DOI: 10.28991/cej-030960

Abstract

Optimal design considering buckling of compressive members is an important subject in structural engineering. The strength of compressive members can be compensated by initial geometrical imperfection due to the manufacturing process; therefore, geometrical imperfection can affect the optimal design of structures. In this study, the metaheuristic teaching-learning-based-optimization (TLBO) algorithm is applied to study the geometrical imperfection-sensitivity of members’ buckling in the optimal design of space trusses. Three benchmark trusses and a real-life bridge with continuous and discrete design variables are considered, and the results of optimization are compared for different degrees of imperfection, namely 0.001, 0.002, and 0.003. The design variables are the cross-sectional areas, and the objective is to minimize the total weight of the structures under the following constraints: tensile and compressive yielding stress, Euler buckling stress considering imperfection, nodal displacement, and available cross-sectional areas. The results reveal that higher geometrical imperfection degrees significantly change the critical buckling load of compressive members, and consequently, increase the weight of the optimal design. This increase varies from 0.4 to 119% for different degrees of imperfection in the studied trusses.
A Study on the Contributing Factors of Major Landslides in Malaysia Danish Kazmi; Sadaf Qasim; I.S.H Harahap; Syed Baharom; Muhammad Imran; Sadia Moin
Civil Engineering Journal Vol 2, No 12 (2016): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (420.014 KB) | DOI: 10.28991/cej-2016-00000066

Abstract

Landslide is one of the most prominent geo-hazard that accounts for colossal losses every year. The contributing factors of landslides in Malaysia are reasonably different from rest of the world. According to a study, the most dominant factor that catalysis the slope failure in many countries of the world is geological conditions. However, in case of Malaysia; most of the landslides occur as a consequence of flawed design, improper construction and non-maintenance of slopes which correlates with the human errors. The statistics of Malaysia shows that highest number of landslides took place in 1996 with 71 cases which is followed by 68 cases in 1995. According to the findings of Highland Towers (1993) landslide, the main causes of failure were inaccuracies in design, poor supervision during the construction and inadequate drainage system. Similarly, in case of Taman Hillview and Bukit Antarabangsa landslide, it has been revealed that improper design practices and poor drainage system supplemented with prolonged rain were the significant causes of the cataclysm. Therefore, based on the investigations on retrospective landslides, this study proposes to incorporate Human Reliability Assessment technique as a part of working strategy for slopes along with strong adherence to the design guidelines in order to minimize the likelihood of landslides.
Compressive Strength Prediction of Self-Compacting Concrete Incorporating Silica Fume Using Artificial Intelligence Methods Valiollah Azizifar; Milad Babajanzadeh
Civil Engineering Journal Vol 4, No 7 (2018): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (900.652 KB) | DOI: 10.28991/cej-0309193

Abstract

This paper investigates the capability of utilizing Multivariate Adaptive Regression Splines (MARS) and Gene Expression Programing (GEP) methods to estimate the compressive strength of self-compacting concrete (SCC) incorporating Silica Fume (SF) as a supplementary cementitious materials. In this regards, a large experimental test database was assembled from several published literature, and it was applied to train and test the two models proposed in this paper using the mentioned artificial intelligence techniques. The data used in the proposed models are arranged in a format of seven input parameters including water, cement, fine aggregate, specimen age, coarse aggregate, silica fume, super-plasticizer and one output. To indicate the usefulness of the proposed techniques statistical criteria are checked out. The results testing datasets are compared to experimental results and their comparisons demonstrate that the MARS (R2=0.98 and RMSE= 3.659) and GEP (R2=0.83 and RMSE= 10.362) approaches have a strong potential to predict compressive strength of SCC incorporating silica fume with great precision. Performed sensitivity analysis to assign effective parameters on compressive strength indicates that age of specimen is the most effective variable in the mixture.
Cyclic Behavior of Steel Beam-to-Column Moment Connections Using Different Sizes of Flange Plates and Reinforced by a Single Rib Plate Abbas Haghollahi; Hassan Ahmadi
Civil Engineering Journal Vol 4, No 1 (2018): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1519.659 KB) | DOI: 10.28991/cej-030975

Abstract

This paper presents a numerical study on the behavior of connection between steel I-beam and H-column when are affected by cyclic loading. The connection used the flange plates to connect the beam flanges to the column flange. They were welded to the top and bottom flange plates and created a welded flange plate (WFP) connection. Specimens were six models of WFP connections with different beam geometry and flange plate sizes which were modeled and their cyclic behavior were investigated using finite element analysis in ABAQUS program. Three of them were reinforced by a vertical triangular top and bottom rib plates, and others remained unreinforced. The results showed that reinforcement with a vertical triangular rib plate attached to the top and bottom flange plates can improve cyclic behavior of WFP connections.  By using a rib plate, the equivalent plastic strain was increased and showed better plastic hinge formation compared to those with no vertical rib plate. Those models with IPB beam sections had the best cyclic behavior compared to those with IPE beam sections and satisfied the acceptance criteria of AISC seismic provisions for intermediate and special moment frames. We concluded that those WFP connections which did not satisfy the criteria of AISC seismic provisions for special moment frames, can be upgraded by a vertical triangular rib plate in order to be used in special moment frames.
The Effects of Using Different Seismic Bearing on the Behavior and Seismic Response of High-Rise Building Saman Mansouri; Amin Nazari
Civil Engineering Journal Vol 3, No 3 (2017): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1121.381 KB) | DOI: 10.28991/cej-2017-00000082

Abstract

The effects of using different seismic bearings were investigated to reduce the seismic response of buildings by assuming the vulnerability of 20-story regular RC building in this paper. The method of this study was that the studied building was studied in three different models in terms of its connection to the foundation. In the first model, the structures were placed on the rigid bearing and in the second and third models; lead-rubber bearings and friction pendulum bearings were placed at the counter between the structure and foundation, respectively. Then, the dynamic analysis was used to assess the behaviour and seismic response of the mentioned models. The results of the study showed that the structures in the first model functioned like cantilever column that would become uniaxial and biaxial bending under the effects of earthquake around the vertical axis of structure. Due to the tensile (tension) weakness in concrete, seismic loads caused major cracks in the tension part of the structures according to the place of the neutral axis that could lead to the collapse of structure. In addition, the use of mentioned seismic bearings under the earthquake caused the structure like a semi-rigid box slid on this equipment that reduced the structure's stiffness and increased the period of the structure in comparison with the first model. Using the studied seismic bearings caused the displacement of the roof of the first and twentieth stories of the structure become approximately equal and prevented the creation of the bending moment in the first model. The results of non-linear time history analysis showed that using the studied seismic bearings caused the response of the structure reduced significantly when the structure was placed on rigid bearings. It could be very valuable regarding the limitation of the capacity of the structure's members.
Investigating the Role of Space Factors in Promoting Vitality for Designing Sports Complex Amir Reza Karimi Azeri; Mehraneh Aladini; Mehrdad Amirnezhad Mozhdehi
Civil Engineering Journal Vol 4, No 7 (2018): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (550.656 KB) | DOI: 10.28991/cej-03091109

Abstract

The quality of urban public space has been one of the focal points of recent design research, with the efforts to create such a public space that could satisfy citizens in different terms has been proposed as one of the main strategies for the urban design projects. As one of the factors affecting the quality of public spaces and urban environments, vitality plays an important role in such settings. On the other hand, the environmental designers are always faced with different aspects of designing public spaces and the important fact is that, among the various factors influencing the vitality, which one has the most important role. In this regard, this study intends to focus on the designing of sports complex in Bandar Anzali in order to enhance the vitality. In terms of research kind, the research is a descriptive-analytical one, in terms of methodology, it uses a survey method and it is functional based on objective. According to the data, it is a quantitative research and it is a field study in terms of implementation. In this regard, among the human-based and environmental variables related to the vitality that were extracted from the documentary and desk research, five cases were selected  as the basis of the research according to the prioritization of environmental psychology developed by the  experts from the faculty of members from the prestigious Iranian  universities. Additionally, the research tools were developed based on this prioritization. The statistical community of the present study involved two cases of the sports complexes representing Bandar Anzali. Therefore, with the determination of the community, sample size and research tools, the selected variables were tested to accept or reject the hypotheses. After analyzing the data by SPSS software, visual beauty, security, sociability, readability and user interaction and 24 hour activity were prioritized respectively. As a result, the analytical model of the research, which in fact includes the main factors affecting the vitality of sports spaces has been formulated as a public space in Anzali.  Finally, the most effective spatial strategies have been presented to promote vitality and to achieve the research goals.
Evaluating the Geotechnical and Geophysical Characteristics of Expanding Districts in Tehran Using Field Experiments Arash Razmyar; Abolfazl Eslami
Civil Engineering Journal Vol 4, No 2 (2018): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5904.829 KB) | DOI: 10.28991/cej-030997

Abstract

Considering the increasing population growth and the rapid growth of urbanization and pollution in the environment, providing zoning maps and urban engineering geology seem to be important. The rapid construction growth of cities, as well as the confrontation with events such as earthquakes and failure to observe the geological and geotechnical issues, has caused many engineering problems. The use of geophysical methods not only cannot lonely provide us a complete and comprehensive information on the geotechnical conditions of the earth but also has many disturbances in urban areas, and its use in urban centers is almost impractical. Therefore, it seems that the best way of examining and interpreting the geotechnical characteristics of a site, especially in urban areas, is the use of suspicious data. Therefore, performing geotechnical studies and geotechnical zoning can be useful for retrofitting buildings and engineering structures and reducing their risks. Hence, zoning studies are conducted in this research in order to better recognize the technical soil status for safe construction due to rising the population of Tehran in recent decades and the concentration of population in certain areas of Tehran, especially in the eastern and western regions (districts 4 and 22). In this study, different geotechnical field tests such as standard penetration test (SPT), cone penetration test (CPT) were used to estimate parameters such as adhesion coefficient (C), internal friction angle ( ), Young modulus (E). Other common experiments with conventional geophysical experiments, such as in good experiments, refractive and CSSW were applied to estimate geophysical parameters of bedrock depth and shear wave velocity for zoning these areas.

Page 26 of 185 | Total Record : 1848


Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue