cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Implementation, Advantages and Management of ISO 9001 in the Construction Industry Fazal Ali Shaikh; Samiullah Sohu
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091535

Abstract

Since 1987, construction companies all over the world welcomed a system for quality management IS0 9001 which was created by the International Organization for standardization. This study aims to recognize the implementation intensity of essential elements of ISO 9001 and the key advantages of ISO 9001 in construction firms after implantation of these elements. Total 51 recognized Pakistani construction companies were considered and studied however the respondent rate remained 59%. Moreover, the analysis of data was done by Statistical Package for the Social Sciences (SPSS) version 27. The most significant advantages and essential elements of ISO 9001 are the results evaluated by the study. Total 34 basic aspects were identified from the previous literature review. The findings of the result showed that the implementation of ISO are very important in construction projects. Identification of current issues and removal of preventable credentials is found most important implementation. Advantages of ISO in the construction industry are Satisfaction of employees, Increment in the ratio of captivation new projects, Decrease in wastage of material and better contacts in global markets respectively. The study will advantage Pakistani construction companies in improving quality work, performance and interest of implementing ISO 9001 will be created in construction firms in regard to groom quality standards.
The Investigation of Use as Aggregate in Lightweight Concrete Production of Boron Wastes Abudalrhman Aldakshe; Hakan Çağlar; Arzu Çağlar; Çağrı Avan
Civil Engineering Journal Vol 6, No 7 (2020): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091551

Abstract

Lightweight concrete manufacture has been aimed as a result of the use of boron waste which is aggregate of pumice, one of our natural resources, and a valuable industrial waste as a substitution material in different proportions (1%, 3%, 5%, 7%, and 9%). As a result of the study, it was aimed to obtain a water-resistant and lighter material which has higher properties than lightweight concrete in terms of physical and mechanical. The study was carried out as three stages. At the first stage, 90% of the pumice aggregate and 10% of the sand (Reference sample) were used and lightweight concrete was produced. At the second stage, boron waste at the rate of 1%, 3%, 5%, 7%, and 9% was used for pumice aggregate and the doped lightweight concrete sample was produced. At the last stage, tests were carried out for the determination of the physical and mechanical properties of lightweight concrete samples which were produced. For determination of mechanical properties, tensile splitting strength and compressive strength tests were performed. Additionally, specific gravity, water saturated unit volume weight, porosity, and capillary water absorption tests were made for the determination of physical diversities. It was found that the physical and mechanical properties of the material improved with the increase of boron waste in the consequence of this study. The best result was obtained with the boron waste substitution at the rate of 9%. Environmentally harmful boron wastes being used in the construction sector will contribute to sustainability by recycling the boron wastes.
Bond between Steel Reinforcement Bars and Seawater Concrete Adnan, Adnan; Parung, Herman; Tjaronge, M. W.; Djamaluddin, Rudy
Civil Engineering Journal Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering"
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-SP(EMCE)-06

Abstract

In order to promote sustainable development in the remote islands this present research attempted to study the suitability of seawater, that available abundantly surrounding the remote islands with Portland composite cement (PCC) and crushed river stones to produce concrete. This research aims to utilize seawater, and Portland composite cement (PCC) to produce high-performance concrete in order to eliminate the main problems of clean water shortage in the low land areas and the remote islands. Infrastructure development can be sustained through the effective use of natural available local materials on the remote islands. The method used in this research is an experimental method in the laboratory. Two variations of concrete were made using freshwater and seawater, respectively as a mixing material with a water to cement ratio (w/c) of 0.55. The evaluation result on concrete compressive strength and bond strength of seawater concrete were discussed. Experimental results showed the compressive strength of the seawater concrete is lower by 6.26% as compared to the normal concrete at water-cement ratio (w/c) of 0.55. In addition, the bonding strength of steel bar embedded in seawater concrete is lower by 4.34% as compared to the bonding strength of steel bar embedded in normal concrete at water-cement ratio (w/c) of 0.55. Doi: 10.28991/cej-2020-SP(EMCE)-06 Full Text: PDF
Road Traffic Accident Analysis and Identification of Black Spot Locations on Highway Iqbal, Asad; Rehman, Zia ur; Ali, Shahid; Ullah, Kaleem; Ghani, Usman
Civil Engineering Journal Vol 6, No 12 (2020): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091629

Abstract

Road safety is the main problem in developing countries. Every year, millions of people die in road traffic accidents, resulting in huge losses of humankind and the economy. This study focuses on the road traffic accident analysis and identification of black spots on the Lahore-Islamabad Highway M-2. Official data of road traffic accidents were collected from National Highway and Highway Police (NH & MP) Pakistan. The data was digitized on MS Excel and Origin Pro. The accident Point weightage (APW) method was employed to identify the black spots and rank of the top ten black spots. The analysis shows that the trend of road traffic accidents on M-2 was characterized by a high rate of fatal accidents of 35.3%. Human errors account for 66.8% as the major contributing factors in road traffic accidents, while vehicle errors (25.6%) and environmental factors (7.6%) were secondary and tertiary contributing factors. The main causes of road traffic accidents were the dozing on the wheel (27.9%), the careless driving (24.6%), tyre burst (11.7%), and the brakes failure (7.4%). Kallar Kahar (Salt Range) was identified as a black spot (223 km, 224 km, 225 km, 229 km, and 234 km) due to vehicle brake failure. The human error was a major contributory factor in road traffic accidents, therefore public awareness campaign on road safety is inevitable and use of the dozen alarm to overcome dozing on the wheel. Doi: 10.28991/cej-2020-03091629 Full Text: PDF
Comparison of Nondestructive Testing Method for Strength Prediction of Asphalt Concrete Material Al-Mattarneh, Hashem; Dahim, Mohammed
Civil Engineering Journal Vol 7, No 1 (2021): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091645

Abstract

Concrete is one of the most common construction materials used in rigid pavement, bridges, roads, highways, and buildings. Compressive strength is one of the most important properties of concrete, which determines its quality. This study aims to present the use of a new surface dielectric method to estimate concrete compressive strength. Six concrete mixtures were produced with compressive strengths ranging from 30 to 60 MPa. Compressive strength and strength development were determined during 28 days of curing. All concrete mixes were tested using the ASTM standard. The dielectric properties, ultrasound velocity, and rebound number of all concrete mixes were also measured at each day of curing. The results obtained from the proposed dielectric method in predicting the compressive strength of concrete were compared with the rebound hammer and ultrasonic velocity that are frequently used to evaluate the compressive strength of concrete.  The dielectric method shows a higher square correlation coefficient than the other two methods. The results also indicate that combined more than one method of nondestructive techniques will lead to higher prediction and could help to reduce some errors associated with using a certain method alone. The result indicate that the finding of this study could lead to help in reducing the time of evaluating concrete during construction and could also provide tools for practicing engineer to take decision faster with more confidence level on quality of concrete. Doi: 10.28991/cej-2021-03091645 Full Text: PDF
Shear Strength Models for Steel Fibre Reinforced Concrete Beams: Current Scenario Singh, Ranjodh; Singh, Harvinder
Civil Engineering Journal Vol 7, No 2 (2021): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091661

Abstract

This review paper presents a comprehensive comparative analysis of various studies conducted on the shear strength of Self-compacting Concrete (SCC) and Normally Vibrated Concrete (NVC) in order to determine the sustainability and affordability of SCC as a construction material. Compaction is the main factor in concrete production. NVC needs compaction and vibration to remove the entrapped air which is both expensive and time-consuming. But SCC has flow ability and passing ability. Although SCC takes a greater amount of paste content, thereby raising the cost of building material, yet the use of such waste material as fly ash, silica, etc. comes in handy as paste content. Thus, the advantages offered by SCC in terms of increased strength as well as cost reduction makes it a highly desirable construction material. The review has selected the works of some eminent scholars on concrete and has analyzed them through individual as well as comparative perspective. A close analysis has helped filter out relevant works for the current study. This process of selection has proved helpful to include most standard works available in the review. Major findings have been enlisted at the end and ways to improve concrete behaviour have been suggested. Doi: 10.28991/cej-2021-03091661 Full Text: PDF
Experimental and Numerical Evaluation of Concentrically Loaded RC Columns Strengthening by Textile Reinforced Concrete Jacketing Ngo, Dang Quang; Nguyen, Huy Cuong; Mai, Dinh Loc; Vu, Van Hiep
Civil Engineering Journal Vol 6, No 8 (2020): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091558

Abstract

Nowadays, Textile Reinforced Concrete (TRC) has become a very popular strengthening technique for concrete structures. This paper presents an investigation on the applicability of TRC for strengthening reinforced concrete column. Both experimental and numerical studies are conducted to evaluate the confinement effects of various TRC strengthening schemes. The experimental study is performed on a series of six reinforced concrete square columns tested to failure. Two of them were un-strengthened as references, the other four were strengthened by one or two layers of Carbon Textile Reinforced Concrete (CTRC). The results indicated that the application of carbon TRC enhanced the ductility and ultimate strength of the specimens. Failure of all strengthened columns was together with tensile rupture of textile reinforcements at the corners of column. Finite element models of the CTRC strengthened columns based on ATENA software package were developed and verified with the experimental results. The analytical results show that in the specimen corner areas, textile reinforcements are subjected to a 3D complicated stress state and this may be the cause of their premature failure.
Determination of Reinforced Concrete Rectangular Sections Having Plastic Moments Equal to all IPE Profiles Beroual, Sayeh; Samai, Mohamed Laid
Civil Engineering Journal Vol 7, No 4 (2021): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091677

Abstract

The comparison between steel structures and reinforced concrete structures has always been governed by economy and response to earthquake. Steel structures being lighter and are thus more efficient to resist earthquake. On the other hand, they are more expensive (4 to 5 times). Theoretically, two structural elements having the same plastic moment have an equal failure or collapse load. Different profiles of IPE are realized in industry and all their characteristics are determined with a great precision (weight, geometrical characteristics and thus their plastic moment). Determining equivalent rectangular singly reinforced concrete cross-sections is not easy and seems impossible to be solved analytically. To a given profile it may be found a multitude of equivalent rectangular reinforced concrete cross-section (singly and doubly reinforced with different yield strengths and compositions of concrete). To take into consideration all these factors, it is absolutely necessary to construct three axis design charts with an appropriate choice of system of coordinates in order to cover all possible ranges of different parameters. The choice of all these possible rectangular reinforced concrete sections is governed by the plastic performance of these later. They must be under reinforced, allowing plastification of steel before failure in order to permit the redistribution phenomenon in plastic analysis. The exploitation of these different charts has revealed that the absolute majority of these rectangular reinforced concrete cross-section are reasonably well designed and are in conformity with the dimensions used in practice. The results of the present characterization using Eurocode 2 characteristics are compared to those of CP110. The impact does not seem to be very relevant. Doi: 10.28991/cej-2021-03091677 Full Text: PDF
Influence of Iron-Filings on Marshall and Volumetric Properties of Asphalt Concrete Al-Tuwayyij, Husham; Sarsam, Saad Issa
Civil Engineering Journal Vol 6, No 9 (2020): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091574

Abstract

The growth and expansion of road infrastructure had resulted in the continuous use of materials, increased construction costs of flexible pavements and increased environmental impact during the service life of the road. Consequently, many researchers have sought to use methods to maintain these roadways sustain environmental impact and traffic loads. One of these approaches is the use of additives to improve asphalt's volumetric character. In this research, iron filings were used as partial replacement of fine aggregates, and the Marshall and volumetric properties were assessed before and after the implementation of iron filings. Specimens were prepared with iron filings addition of (2, 4, 6 and 8%) by weight of fine aggregates. The Marshall mix design procedure was used to calculate the optimum asphalt content and the volumetric properties, including bulk density, Total voids, voids in mineral aggregates V.M.A., and voids filled with asphalt V.F.A. The Marshall Flow and Stability were calculated. Test results were assessed before and after the inclusion of the iron filings. It was concluded that the addition of iron filings can enhance the Marshall and volumetric properties of asphalt. The stability increased by 15% when replacing fine aggregates by 2%, of iron filings by total weight. Also, the air voids and the VMA decreased by increasing the percentage of iron filings, while VFA was not significantly affected as compared to the conventional specimen. The ideal ratio of iron filings which fulfill the optimal requirements was 5%.
The Suitability of Bailey Method for Design of Local Asphalt Concrete Mixture Ahmed Fahim Rahi; Amjad Albayati
Civil Engineering Journal Vol 7, No 5 (2021): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091693

Abstract

The study investigated the behaviour of asphalt concrete mixes for aggregate gradations, according to the Iraqi specification using the Bailey method designed by an Excel spreadsheet. In mixing aggregates with varying gradations (coarse and fine aggregate), The Bailey method is a systematic methodology that offers aggregate interlocking as the backbone of the framework and a controlled gradation to complete the blends. Six types of gradation are used according to the bailey method considered in this study. Two-course prepared Asphalt Concrete Wearing and Asphalt Concrete binder, the Nominal Maximum Aggregate Sizes (NMAS) of the mixtures are 19 and 12.5 mm, respectively. The total number of specimens was 240 for both layers (15 samples) for each Chosen Unit Weight (CUW). The Marshall Test results show the increase in stability and decrease in flow and bulk density when the rise in CUW for both courses. In volumetric properties, VMA increases when the increase in CUW. When an increase in CUW air void increases gradually. The permanent deformation for the coarse aggregate (95, 100, 105% CUW) has more resistances than the fine aggregate (80, 85, 90%) wearing and binder coarse. The CUW (105%) blend of wearing, and binder course has a high value of stability and resistance to permanent deformation (11.9, 11.1 kN). The CUW above mentioned is considered a good design aggregate structure and produces improvement to the Marshall properties, leading to better performance for pavement roads and higher resistance to distresses. Doi: 10.28991/cej-2021-03091693 Full Text: PDF

Page 74 of 185 | Total Record : 1848


Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue