cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
WHEAT STRAW OPTIMIZATION VIA ITS EFFICIENT PRETREATMENT FOR IMPROVED BIOGAS PRODUCTION Memon, Muhammad Jaffar; Memon, Abdul Rehman
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091528

Abstract

The complex indigenous configuration of non-bio-labile wheat straw necessitates its pretreatment to optimize the breakdown of its structural components for its ultimate conversion into biogas by means of anaerobic digestion. In this research work, wheat straw was pretreated with potassium hydroxide (KOH) to facilitate its improved biodegradability. The pretreatment of wheat straw was also obvious in terms of its crystallinity resulting in the improved amorphous regions compared to the control wheat straw. The results showed that pretreated wheat straw digestion transpired into comparatively higher removal of TS (86%), VS (89%) and total lignin, cellulose and hemicellulose (22%) than that obtained with control wheat straw. Maximum biogas production accrued was 1550 mLN per day with optimized dosing of KOH compared to 967 mLN per day obtained with control wheat straw, implying that the cumulative biogas production was improved by 45% using pretreated wheat straw than that using control wheat straw. These results suggested that pretreated wheat straw digestion led to a significant improvement in the biogas yield.
Net Section Fracture Assessment of Welded Rectangular Hollow Structural Sections Abedin, Mohammad; Kiani, Nafiseh; Shahrokhinasab, Esmail; Mokhtari, Sohrab
Civil Engineering Journal Vol 6, No 7 (2020): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091544

Abstract

Rectangular Hollow Sections (RHS) because of their high resistance to tension, as well as compression, are commonly used as a bracing member with slotted gusset plate connections in steel structures. Since in this type of connection only part of the section contributes in transferring the tensile load to the gusset plate, shear lag failure may occur in the connection. The AISC specification decreases the effective section net area by a factor to consider the effect of shear lag for a limited connection configuration. This study investigates the effective parameters on the shear lag phenomenon for rectangular hollow section members connected at corners using a single concentric gusset plate. The results of the numerical analysis show that the connection length and connection eccentricity are the only effective parameters in the shear lag, and the effect of gusset plate thickness is negligible because of the symmetric connection. The ultimate tensile capacity of the suggested connection in this study were compared to the typical RHS connection presented in the AISC and the similar double angle sections connected at both legs. The comparison indicates that tensile performance of the suggested connection in this study because of its lower connection eccentricity is much higher than the typical slotted connection and double angle connections. Therefore, a new equation is suggested based on the finite element analyses to modify the AISC equation for these connections.
INFLUENCE OF JUTE FIBRE ON CBR VALUE OF EXPANSIVE SOIL Kumar, Sanjeev; Sahu, Anil Kumar; Naval, Sanjeev
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091539

Abstract

Construction of structures on expansive soil is highly risky due to its susceptible behavior towards differential settlements. Different soil stabilization techniques including soil reinforcement have been adopted to improve the properties of the unsuitable soils. In this present study, randomly distributed jute fibres have been used to improve geotechnical properties of expansive soil collected from South Delhi (India). California Bearing Ratio (CBR) tests were carried out on the expansive soil blended with jute fibres. Jute fibres of length 10 mm and 30 mm were included in different percentages viz. 0.25, 0.50, 0.75, 1.00, 1.25 and 1.50 by the dry weight of the soil. The test results indicate that the inclusion of randomly distributed jute fibres significantly improves the CBR value of the soil. The Optimum value of fibre content is found to be 1.25%. An improvement of 226.92% in CBR value of the reinforced soil as compared to unreinforced soil has been observed at the optimum jute fibre content. Since Jute is agricultural waste, the present study provides a cost-effective solution to problematic clayey soils.
A Systematic Review of Civil and Environmental Infrastructures for Coastal Adaptation to Sea Level Rise Nazarnia, Hadi; Nazarnia, Mohammad; Sarmasti, Hadi; Wills, W. Olivia
Civil Engineering Journal Vol 6, No 7 (2020): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091555

Abstract

Rising levels of seas and oceans due to global warming could drastically affect the daily lives of residents in coastal belts and lowland areas. Many of the most heavily populated regions in the world have been developed on the shorelines. Sea-level rise could directly affect the serviceability of urban structures and infrastructures of coastal regions; effects may include intrusion of salt water into drinking water resources, submergence of roads and railways, flowing of seawater into wastewater networks, and exacerbating land subsidence. These reasons have urged climate-change and infrastructure resilience researchers to focus on methods for prediction and prevention of SLR effects on urbanization systems. Most of the studies have concentrated on environmental aspects or modeling of flooding, however, there is a lack of research on behavior of urban lifelines for long-term planning. Hence, the resilience of coastal cities has become of more interest in recent years. This paper presents a meta- analysis and review of existing literatures on the impacts of SLR on civil infrastructure. We categorize these impacts based on different types of infrastructures (e.g. water, transportation, energy) and regions. The review provides i) an intensive coverage of the existing literature on adaptations ii) an exploration of current gaps and challenges in civil infrastructures in different regions of the world and iii) the engineering perspective of SLR besides managing directions to be useful for engineers, advisory committees, policy makers, and scholars for future studies.
Neural-Network Based Prediction of Inelastic Response Spectra Sofiane Hammal; Nouredine Bourahla; Nasser Laouami
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091534

Abstract

The prediction of the nonlinear seismic demand for a given hazard level is still a challenging task for seismic risk assessment. This paper presents a Ground Motion Prediction Model (GMPE) for efficient estimation of the inelastic response spectra of 5% damped Single Degree of Freedom (SDOF) systems, with Elastic-Perfectly-Plastic hysteretic behavior in terms of seismological parameters and structural properties. The model was developed using an Artificial Neural Network (ANN) with Back-Propagation (BP) learning algorithm, by means of 200 records collected from KiK-Net database. The proposed model outputs an inelastic response spectra expressed by a 21 values of displacement amplitudes for an input set composed of three earthquake parameters; moment magnitude, depth and source-to-site distance; one site parameter, the shear wave velocity; and one structural parameter, the strength-reduction factor. The performance of the neural network model shows a good agreement between the predicted and computed values of the inelastic response spectra. As revealed by a sensitivity analysis, the seismological parameters have almost the same influence on the inelastic response spectra, only the depth which shows a reduced impact. The advantage of the proposed model is that it does not require an auxiliary elastic GMPE, which makes it easy to be implemented in Probabilistic Seismic Hazard Analysis (PSHA) methodology to generate probabilistic hazard for the inelastic response.
Effects of Shape Memory Alloys on Response of Steel Structural Buildings within Near Field Earthquakes Zone Mahmoud Ahmadinejad; Alireza Jafarisirizi; Reza Rahgozar
Civil Engineering Journal Vol 6, No 7 (2020): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091550

Abstract

Base isolation is one of the effective ways for controlling civil engineering structures in seismic zone which can reduce seismic demand. Also is an efficient passive control mechanism that protects its superstructure during an earthquake. However, residual displacement of base-isolation systems, resulting from strong ground motions, remain as the main obstacle in such system’s serviceability after the earthquake. Shape Memory Alloys (SMA) is amongst the newly introduced smart materials that can undergo large nonlinear deformations with considerable dissipation of energy without having any permanent displacement afterward. This property of SMA may be utilized for designing of base isolation system to increase the structure’s serviceability. Here, a proposed semi-active isolation system combines laminated rubber bearing system with shape memory alloy, to take advantage of SMAs high elastic strain range, in order to reduce residual displacements of the laminated rubber bearing. Merits of the system are demonstrated by comparing it to common laminated rubber bearing isolation systems. It is found that the optimal application of SMAs in base-isolation systems can significantly reduce bearings’ residual displacements. In this study, OpenSees program for a three dimensional six-storey steel frame building has been used by locating the isolators under the columns for investigating the feasibility of smart base isolation systems, i.e., the combination of traditional Laminated Rubber Bearing (LRB) with the SMA, in reducing the structure’s isolated-base response to near field earthquake records are examined. Also, a new configuration of SMAs in conjunction with LRB is considered which make the system easier to operate and maintain.
Willingness-To-Pay for Estimation the Risk Pedestrian Group Accident Cost Chompoonut Puttawong; Preeda Chaturabong
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091529

Abstract

The proven willingness-to-pay with contingent valuation (WTP-CV) method is an effective tool for evaluating the cost of road accidents in many countries. In Thailand, the most fatalities on Thailand’s roads involve the vulnerable road users (VRUs) including motorcycle users, bicyclists, and pedestrians. With the effectiveness of using WTP-CV in analyzing the accident cost of motorcycle users and lack of specific accident cost for pedestrians, this research focuses on evaluating the accident cost on the pedestrians which is the second most VRU fatality. In this research, the road accident cost of pedestrians aged 15-39 years in Bangkok by WTP-CV method was determined. The WTP-CV questionnaire was employed as a tool to measure the payment of which each pedestrian is willing to pay to reduce the fatality and injury risk from road accidents. One thousand and two hundred pedestrians in Bangkok were interviewed. With the results, the value of statistical life (VOSL) for pedestrians in Bangkok is valued at US$ 0.43 million, while the value of statistical injury (VOSI) is estimated at about US$ 0.014 million, respectively. In addition, it is found from the regression analysis that for the fatality risk reduction, higher educational levels and private business pedestrians are likely to pay more to save their lives. In order to reduce the risk of injury, respondents, who are single in marriage status, are likely to pay more to reduce the risk of pedestrian injury. However, a high perception of safety is less likely to pay for the reduction of injury risk.
Computing the Water Budget Components for Lakes by Using Meteorological Data Rawya Kansoh; Mohamed Abd-El-Mooty; Rania Abd-El-Baky
Civil Engineering Journal Vol 6, No 7 (2020): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091545

Abstract

Lake Mariout located between the longitudes of 29° 49′ and 29° 56′E and latitudes of 31° 04′ and 31° 08′N in Egypt. It is situated on the southern side of Alexandria City, Egypt. The land surrounding the lake is occupied by agriculture field, population zones and fish farms. This makes the lake to serve as a sink to drain different kinds of drainage waters from surrounding catchment areas of Alexandria City. The water of Lake Mariout is pumped to the Mediterranean Sea through El-Max pump station. The water budget was computed by measuring or estimating all of the lake’s water gains and losses. Applying the hydrology budget balance for lakes takes the interaction between the inflow and the outflow water from lakes into account. It is very useful for conservation and better management of water resources. All water budget components of the lake are estimated. Groundwater amount is the most difficult component to be measured or estimated in the water budget equation. Most of the previous studies assumed that the residual of water budget to be the groundwater flow to the lake. The results show that the lake Mariout receives approximately 8.95 m3/d from the main drains which represents the major part of the inflow water to lake. The discharge of El-max pump station is also one of the largest components of the outflow water (102 m3/s), while the water loss by evaporation represents 3.2% of the outflow water from the lake. Moreover, the water gain by rainfall 0.38% of the inflow water. The Groundwater flow to/out the lake was estimated as a residual of the water budget equation. It represents 1.2% of the total inputs for the lake water budget. The result shows that the lake is under severe environmental pressure. One of that is the groundwater comes from catchments areas which may be affect the configuration and operating system management of El-Max pump station by the time running.
Mechanical Behaviour and Microstructure Characteristic of Concrete by Using Freshwater and Seawater Mansyur Mansyur; Dian Permana
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091540

Abstract

The development of infrastructure in archipelago countries often faces difficulties and challenges due to the lack of fresh water. Hence, in some cases, the usage of seawater is favourable, in particular for concrete making. Little studies have been conducted on comparing the seawater, and freshwater concretes, especially on microstructure analysis. The objective of this study was to reveal the compressive strength, elasticity, and microstructure of concrete using seawater and freshwater as the mixing water. The methodology of this study was mix design, making test specimens, curing test specimens, and microstructure analysis. The tests of concretes were conducted for each sample with variations of 1, 3, 7, and 28 days and the mechanical behavior were tested using compressive strength and elasticity as parameters. At the same time, the microstructure was examined using an X-Ray Diffraction (XRD). The results showed an increase in compressive strength and elasticity of seawater and freshwater concretes at all variations with insignificant differences observed between the two types of concretes. It was also discovered that the formation of Friedel's salt (3CaO.Al2O3.CaCl2.10H2O) in the seawater concrete was not in the freshwater concrete. In conclusion, the differentiation of microstructure did not significantly affect the compressive strength and elasticity between seawater and freshwater in mixing concrete.
Compressive Strength of Concrete using Fly Ash and Rice Husk Ash: A Review Joel Sam
Civil Engineering Journal Vol 6, No 7 (2020): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091556

Abstract

Decreasing our over-reliance on cement as an ingredient in the making of concrete due to its contribution to the CO2 emissions has led to numerous researches been conducted to find suitable replacement for cement in concrete mixes.  Materials like fly ash, ground granulated blast furnace slag, silica fume, rice husk ash and metakaolin among others have been identified as materials that can at the very least be used as a replacement for cement in concrete mix. These materials are referred to as supplementary cementitious materials (SCMs). This paper reviewed the work that has been done on the use of fly ash and rice husk ash as partial replacements for concrete, its chemical composition and its effect on the compressive strength of concrete. Charts, tables and figures were employed as tools to study the various chemical compounds of fly ash and rice husk ash. It was seen that depending on how the coal or rice husk was initially processed the percentage of some of the minor compounds like Sodium oxide (Na2O), Titanium oxide (TiO2) and Phosphorus pentoxide (P2O5) were sometimes very low or not recorded as part of the final product.  The data on the compressive strength of concrete after fly ash and rice husk ash had been added in percentage increments of 0%, 10%, 20%, 30%, 40%, 50% and 0%, 5%, 7.5%, 10%, 12.5%, 15% respectively analysed over a minimum period of 7 days and a maximum period of 28 days found out that the optimal percentage partial replacement of fly ash and rice husk ash for a strong compressive concrete strength is 30% of fly ash and 7.5% of rice husk ash.

Page 73 of 185 | Total Record : 1848


Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue